I don't understand how the cofactor of a matrix is obtained. You have a 3x3 matrix with a bunch of 2x2 matrices inside but how the numbers for these 2x2 matrices are obtained is what I don't understand. So I just want to know how to set up the 2x2 matrices inside the 3x3 matrix. If you have a matrix like this, what pattern is being used in the 3x3 matrix with all the smaller 2x2 matrices inside? It doesn't make sense how they got that.
\(\displaystyle \
\L\
\begin{array}{l}
{\rm If }A = \left[ {\begin{array}{*}
1 & 2 & 6 \\
5 & 8 & 7 \\
0 & 3 & 4 \\
\end{array}} \right],{\rm Then cof}(A) = \left[ {\begin{array}{*}
{\left[ {\begin{array}{*}
8 & 7 \\
3 & 4 \\
\end{array}} \right]} & { - \left[ {\begin{array}{*}
5 & 7 \\
0 & 4 \\
\end{array}} \right]} & {\left[ {\begin{array}{*}
5 & 8 \\
0 & 3 \\
\end{array}} \right]} \\
{ - \left[ {\begin{array}{*}
2 & 6 \\
3 & 4 \\
\end{array}} \right]} & {\left[ {\begin{array}{*}
1 & 6 \\
0 & 4 \\
\end{array}} \right]} & { - \left[ {\begin{array}{*}
1 & 2 \\
0 & 3 \\
\end{array}} \right]} \\
{\left[ {\begin{array}{*}
2 & 6 \\
8 & 7 \\
\end{array}} \right]} & { - \left[ {\begin{array}{*}
1 & 6 \\
5 & 7 \\
\end{array}} \right]} & {\left[ {\begin{array}{*}
1 & 2 \\
5 & 8 \\
\end{array}} \right]} \\
\end{array}} \right] \\
= \left[ {\begin{array}{*}
{11} & {- 20} & {15} \\
{10} & 4 & { - 3} \\
{ - 34} & {23} & { - 2} \\
\end{array}} \right] \\
\end{array}
\\)
I know that you alternate the signs +/- between all the 2x2 matrices inside. Also, how do you do this with just a 2x2 matrix? (finding the cofactor of a 2x2 matrix)
\(\displaystyle \
\L\
\begin{array}{l}
{\rm If }A = \left[ {\begin{array}{*}
1 & 2 & 6 \\
5 & 8 & 7 \\
0 & 3 & 4 \\
\end{array}} \right],{\rm Then cof}(A) = \left[ {\begin{array}{*}
{\left[ {\begin{array}{*}
8 & 7 \\
3 & 4 \\
\end{array}} \right]} & { - \left[ {\begin{array}{*}
5 & 7 \\
0 & 4 \\
\end{array}} \right]} & {\left[ {\begin{array}{*}
5 & 8 \\
0 & 3 \\
\end{array}} \right]} \\
{ - \left[ {\begin{array}{*}
2 & 6 \\
3 & 4 \\
\end{array}} \right]} & {\left[ {\begin{array}{*}
1 & 6 \\
0 & 4 \\
\end{array}} \right]} & { - \left[ {\begin{array}{*}
1 & 2 \\
0 & 3 \\
\end{array}} \right]} \\
{\left[ {\begin{array}{*}
2 & 6 \\
8 & 7 \\
\end{array}} \right]} & { - \left[ {\begin{array}{*}
1 & 6 \\
5 & 7 \\
\end{array}} \right]} & {\left[ {\begin{array}{*}
1 & 2 \\
5 & 8 \\
\end{array}} \right]} \\
\end{array}} \right] \\
= \left[ {\begin{array}{*}
{11} & {- 20} & {15} \\
{10} & 4 & { - 3} \\
{ - 34} & {23} & { - 2} \\
\end{array}} \right] \\
\end{array}
\\)
I know that you alternate the signs +/- between all the 2x2 matrices inside. Also, how do you do this with just a 2x2 matrix? (finding the cofactor of a 2x2 matrix)