Coefficent in a infinite power series

pac1337

New member
Joined
Jun 3, 2021
Messages
1
How do I find a coefficent of x9 in a power series like this: (1+x3+x6+x9+...)3
or this: (x2+x3+x4+x5+...)3
 
If they are literally 'like these', then you can use [MATH](1+X+X^2+X^3....)=\frac{1}{1-X} \text{ when }|X|<1[/MATH]So [MATH](1+x^3+x^6+x^9+...)^3 = \left(\frac{1}{1-x^3}\right)^3=(1-x^3)^{-3}[/MATH]which you can then expand up to [MATH]x^9[/MATH]
[MATH](x^2+x^3+x^4+...)^3=(x^2(1+x+x^2+..))^3=x^6(1-x)^{-3}[/MATH]which you can expand up to [MATH]x^3[/MATH]
or you can expand them quite easily manually up to [MATH]x^9[/MATH]or you can ask wolframalpha to tell you: here
 
If they are literally 'like these', then you can use [MATH](1+X+X^2+X^3....)=\frac{1}{1-X} \text{ when }|X|<1[/MATH]So [MATH](1+x^3+x^6+x^9+...)^3 = \left(\frac{1}{1-x^3}\right)^3=(1-x^3)^{-3}[/MATH]which you can then expand up to [MATH]x^9[/MATH]
I understood all this until you said to expand up to x9. Isn't (1-x^3)^-3 a rational expression?
 
If they are literally 'like these', then you can use [MATH](1+X+X^2+X^3....)=\frac{1}{1-X} \text{ when }|X|<1[/MATH] So [MATH](1+x^3+x^6+x^9+...)^3 = \left(\frac{1}{1-x^3}\right)^3=(1-x^3)^{-3}[/MATH] which you can then expand up to [MATH]x^9[/MATH]
I understood all this until you said to expand up to x9. Isn't (1-x^3)^-3 a rational expression?
Where was it posted that \(|X|<1~?\)
 
I understood all this until you said to expand up to x9. Isn't (1-x^3)^-3 a rational expression?
 
Where was it posted that \(|X|<1~?\)

[MATH](1+X+X^2+X^3....) \text{ only converges to }\frac{1}{1-X} \text{ when }|X|<1[/MATH]This is where |X|<1 first appears.
The power series expansion of [MATH]\frac{1}{1-X}[/MATH] is [MATH]\hspace1ex 1+X+X^2+X^3[/MATH].... (and this converges when |X|<1).
[MATH]\frac{1}{(1-x^3)^3}[/MATH] produces the same power series as in the original post, (and it converges when |x|<1) and so can be used to generate the coefficient of [MATH]x^9[/MATH].
 
[MATH](1-x^3)^{-3}=1 + (-3)(-x^3)+\frac{(-3)(-4)}{2!}(-x^3)^2+\frac{(-3)(-4)(-5)}{3!}(-x^3)^3+...+ \tfrac{\prod\limits_{i=0}^{k-1} (3+i)}{k!} \;x^{3k}+...[/MATH]\begin{align*}
\text{So the coefficient of } x^9 \text{ is: }&\frac{(-3)(-4)(-5)}{3!}\\
&=10\\
\end{align*}
 
Top