Let [Math]f : D[/Math]->[Math] R[/Math] where [Math]D \subset R^{k}[/Math], [Math]k = 1[/Math] or [Math]2[/Math]. Let f be continuous at [Math]a \in D[/Math]and let [Math]a[/Math] be a cluster point of a subset [Math]E[/Math] of [Math]D[/Math]. If there is a real number [Math]y[/Math] such that for each [Math]x \in E,[/Math] [Math]f(x) \le y[/Math], then [Math]f(a) \le y[/Math].
This is what I have so far:
Given: The range is in [Math]R^{1}[/Math] thus the domain is restricted to [Math]R^{1}[/Math].
Given: [Math]f[/Math] is continuous at [Math]a[/Math]Given: [Math]a[/Math] is a cluster point of [Math]E[/Math]Given: [Math]f[/Math] is bounded [Math]\forall x \in E[/Math]Given: [Math]a \in D[/Math]
Case 1: Since, [Math]E \subset D[/Math], let [Math]a \in E[/Math]: Since [Math]f[/Math] is bounded [Math]\forall x \in E[/Math] such that
[Math]f(x) \le y[/Math] and we know that [Math]\exists x = a[/Math], [Math]\forall x \in E[/Math]. This implies that [Math]f(a) \le y[/Math]
Case 2: Since, [Math]E \subset D[/Math], let [Math]a \notin E[/Math]: We want to show that [Math]f(a) = y[/Math]
I some how need to prove that the cluster point, [Math]a[/Math], lies on the edge of the domain and when plugged in is essentially the real number that bounds [Math]f(x)[/Math]... not sure.
This is what I have so far:
Given: The range is in [Math]R^{1}[/Math] thus the domain is restricted to [Math]R^{1}[/Math].
Given: [Math]f[/Math] is continuous at [Math]a[/Math]Given: [Math]a[/Math] is a cluster point of [Math]E[/Math]Given: [Math]f[/Math] is bounded [Math]\forall x \in E[/Math]Given: [Math]a \in D[/Math]
Case 1: Since, [Math]E \subset D[/Math], let [Math]a \in E[/Math]: Since [Math]f[/Math] is bounded [Math]\forall x \in E[/Math] such that
[Math]f(x) \le y[/Math] and we know that [Math]\exists x = a[/Math], [Math]\forall x \in E[/Math]. This implies that [Math]f(a) \le y[/Math]
Case 2: Since, [Math]E \subset D[/Math], let [Math]a \notin E[/Math]: We want to show that [Math]f(a) = y[/Math]
I some how need to prove that the cluster point, [Math]a[/Math], lies on the edge of the domain and when plugged in is essentially the real number that bounds [Math]f(x)[/Math]... not sure.