Hi Handicap Joe
Handicap Joe said:
Subtract and simplify if possible
(6-z)/(z-4) - (5z-7)/(4-z)
(6-z+(-5z)+7)/(z-4+4-z)
-6z+13
How'd I do on this one?
No, that's not right.
\(\displaystyle \frac{6-z}{z-4}-\frac{5z-7}{4-z}\neq \frac{6-z-5z+7}{z-4+4-z}\)
For fraction, you can't just add or subtract the numerator and denominator. Simple example :
\(\displaystyle \frac{1}{2}+\frac{1}{2}=\frac{1+1}{2}=\frac{2}{2}=1\, \text{, not}\, \frac{1}{2}+\frac{1}{2}=\frac{1+1}{2+2}=\frac{2}{4}\longrightarrow \text{wrong}\)
So, to add or subtract fraction, the denominator must be the same, and we just subtract or add the numerator.
\(\displaystyle \frac{6-z}{z-4}-\frac{5z-7}{4-z}\)
\(\displaystyle =\frac{6-z}{z-4}*\frac{4-z}{4-z}-\frac{5z-7}{4-z}*\frac{z-4}{z-4}\)
\(\displaystyle =\frac{(6-z)(4-z)}{(z-4)(4-z)}-\frac{(5z-7)(z-4)}{(4-z)(z-4)}}\)
\(\displaystyle =\frac{(6-z)(4-z)-(5z-7)(z-4)}{(z-4)(4-z)}\)
Can you continue?