without using the following method in the quote box:
\(\displaystyle \sqrt{ \ 2 + \sqrt{3} \ } \ + \ \sqrt{ \ 2 - \sqrt{3} \ } \)
\(\displaystyle \sqrt{ \ 2 + \sqrt{3} \ } \ + \ \sqrt{ \ 2 - \sqrt{3} \ } \)
soroban said:\(\displaystyle x = \sqrt{ \ 2 + \sqrt{3} \ } \ + \ \sqrt{ \ 2 - \sqrt{3} \ } \)
Square both sides:
. . \(\displaystyle x^2 \;=\;\left[\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}}\right]^2\)
. . \(\displaystyle x^2 \;=\;\left(\sqrt{2+\sqrt{3}}\right)^2 + 2\sqrt{(2+\sqrt{3})(2-\sqrt{3})} + \left(\sqrt{2-\sqrt{3}}\right)^2\)
. . \(\displaystyle x^2 \;=\;2 + \sqrt{3} \:+\: 2\sqrt{4-3} \:+\: 2-\sqrt{3}\)
. . \(\displaystyle x^2 \;=\;2 + \sqrt{3} \:+\: 2 \:+\: 2 - \sqrt{3}\)
. . \(\displaystyle x^2 \;=\;6\)
Therefore: .\(\displaystyle x \:=\:\sqrt{6}\)
Last edited by a moderator: