Challenge problem involving square roots

lookagain

Elite Member
Joined
Aug 22, 2010
Messages
3,230
without using the following method in the quote box:


\(\displaystyle \sqrt{ \ 2 + \sqrt{3} \ } \ + \ \sqrt{ \ 2 - \sqrt{3} \ } \)

soroban said:
\(\displaystyle x = \sqrt{ \ 2 + \sqrt{3} \ } \ + \ \sqrt{ \ 2 - \sqrt{3} \ } \)

Square both sides:

. . \(\displaystyle x^2 \;=\;\left[\sqrt{2+\sqrt{3}} + \sqrt{2-\sqrt{3}}\right]^2\)

. . \(\displaystyle x^2 \;=\;\left(\sqrt{2+\sqrt{3}}\right)^2 + 2\sqrt{(2+\sqrt{3})(2-\sqrt{3})} + \left(\sqrt{2-\sqrt{3}}\right)^2\)

. . \(\displaystyle x^2 \;=\;2 + \sqrt{3} \:+\: 2\sqrt{4-3} \:+\: 2-\sqrt{3}\)

. . \(\displaystyle x^2 \;=\;2 + \sqrt{3} \:+\: 2 \:+\: 2 - \sqrt{3}\)

. . \(\displaystyle x^2 \;=\;6\)


Therefore: .\(\displaystyle x \:=\:\sqrt{6}\)
 
Last edited by a moderator:
\(\displaystyle \sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\)

\(\displaystyle \sqrt{\dfrac{4+2\sqrt{3}}{2}}+\sqrt{\dfrac{4-2\sqrt{3}}{2}}=\)

\(\displaystyle \sqrt{\dfrac{(\sqrt{3}+1)^2}{2}}+\sqrt{\dfrac{( \sqrt{3}-1)^2}{2}}=\)

\(\displaystyle \dfrac{\sqrt{2}}{2}\left(\sqrt{3}+1+\sqrt{3}-1 \right)=\dfrac{2\sqrt{2}\sqrt{3}}{2}=\sqrt{6}\)
 
I was unsuccessful in changing the title to this thread.

You probably also want to avoid embedding \(\displaystyle \LaTeX\) in topic titles in the future as well, as this increases server strain. :)

I recommend reporting the first post to the staff and request that the title be edited.
 
Top