find dy/dx of y=(sinx/1+cosx)^2
so far got this y=u^2
y'=2u which eguals 2(sinx/1+cosx)
u=(sinx/1+cosx)
u'= [(1+cosx)(cosx)-(sinx)(-sinx)]/(1+cosx)^2
dy/dx= (2sinx/1+cosx)(cosx+cos^2x+sin^2x/(1+cosx)^2
i was wondering if i did it so far right and if so can it be simplified any further
thanks
so far got this y=u^2
y'=2u which eguals 2(sinx/1+cosx)
u=(sinx/1+cosx)
u'= [(1+cosx)(cosx)-(sinx)(-sinx)]/(1+cosx)^2
dy/dx= (2sinx/1+cosx)(cosx+cos^2x+sin^2x/(1+cosx)^2
i was wondering if i did it so far right and if so can it be simplified any further
thanks