Hello, tlc!
xf(x)g(x)f′(x)g′(x)
−16166473
−4−16162−4
0−2417
1636−2−1
6402−2−2
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1. Given:
y=f(x⋅f(x)).
. . Find
y′ when
x=-
4
Use the Chain Rule and the Product Rule, then substitute the values.
y′=f′[x⋅f(x)]⋅[x⋅f′(x)+f(x)]
y′=f′[-
4⋅f(-
4)]⋅[-
4⋅f′(-
4)+f(-
4)]
y′=f′[(-
4)(-
16)]⋅[-
4(2)+(-
16)]
y′=f′(64)⋅[-
8−16]
y′=(-
1)⋅[-
24]
y′=24
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2. Given:
y=g(x)+6f(x) . . Find
y′ when
x=-
16
Use the Quotient Rule, then substitute the values.
\(\displaystyle \L y'\;=\;\frac{\left[g(x)\,+\,6\right]\cdot f'(x)\,-\,f(x)\cdot g'(x)}{\left[g(x)\,+\,6\right]^2}\)
\(\displaystyle \L y'\;=\;\frac{[g(-16)\,+\,6]\cdot f'(-16)\,-\,f(-16)\cdot g'(-16)}{[g(-16)\,+\,6]^2}\)
\(\displaystyle \L y'\;=\;\frac{[64\,+\,6]\cdot(7)\,-\,(16)(3)}{(64\,+\,6)^2}\)
\(\displaystyle \L y'\;=\;\frac{(70)(7)\,-\,(16)(3)}{(70^2)}\)
\(\displaystyle \L y'\;=\;\frac{490\,-\,48}{4900}\;=\;\frac{442}{4900}\;=\;\frac{221}{2450}\)