chain rule

tlc

New member
Joined
Dec 11, 2005
Messages
1
we have this table showing values:

MATH.jpg


then some equations we have to find the derivitive of.
i cannot for the life of me figure out what to do for these two:


1. f (x * f(x)) when x = -4

&

2. f(x) when x= -16
g(x) + 6

can someone help me?

i have tried:
1. f'(x * f(x))* x * f'(x) which didnt work
 
Hello, tlc!

\(\displaystyle \;\;\;x\;\;\,f(x)\;\,g(x)\;\,f'(x)\;\,g'(x)\)

\(\displaystyle \;-16\;\;\;16\;\;\;64\;\;\;7\;\;\;\;\,3\)

\(\displaystyle \;\,-4\;\,-16\;\;\;16\;\;\;\:2\;\;\;-4\)

\(\displaystyle \;\;\;0\;\;-2\;\;\;\;4\;\;\;\;1\;\;\;\;7\)

\(\displaystyle \;\;16\;\;\;\:3\;\;\;\;6\;\;\;-2\;\;\;-1\)

\(\displaystyle \;\;64\;\;\;0\;\;\;\;\,2\;\;\;-2\;\;\;-2\)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1. Given: \(\displaystyle \;y\;=\;f(x\cdot f(x))\). . . Find \(\displaystyle y'\) when \(\displaystyle x\,=\,\)-\(\displaystyle 4\)
Use the Chain Rule and the Product Rule, then substitute the values.

\(\displaystyle y'\;=\;f'[x\cdot f(x)]\cdot\left[x\cdot f'(x)\,+\,f(x)\right]\)

\(\displaystyle y'\;=\;f'[\)-\(\displaystyle 4\cdot f(\)-\(\displaystyle 4)] \cdot [\)-\(\displaystyle 4\cdot f'(\)-\(\displaystyle 4)\,+\,f(\)-\(\displaystyle 4) ]\)

\(\displaystyle y'\;=\;f'[ (\)-\(\displaystyle 4)(\)-\(\displaystyle 16)] \cdot [\)-\(\displaystyle 4(2)\,+\,(\)-\(\displaystyle 16)]\)

\(\displaystyle y'\;=\;f'(64)\cdot[\)-\(\displaystyle 8\,-\,16]\)

\(\displaystyle y'\;=\;(\)-\(\displaystyle 1)\cdot[\)-\(\displaystyle 24]\)

\(\displaystyle y'\;=\;24\)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

2. Given: \(\displaystyle \;y \;= \;\frac{f(x)}{g(x)\,+\,6}\) . . Find \(\displaystyle y'\) when \(\displaystyle x\,=\,\)-\(\displaystyle 16\)
Use the Quotient Rule, then substitute the values.

\(\displaystyle \L y'\;=\;\frac{\left[g(x)\,+\,6\right]\cdot f'(x)\,-\,f(x)\cdot g'(x)}{\left[g(x)\,+\,6\right]^2}\)

\(\displaystyle \L y'\;=\;\frac{[g(-16)\,+\,6]\cdot f'(-16)\,-\,f(-16)\cdot g'(-16)}{[g(-16)\,+\,6]^2}\)

\(\displaystyle \L y'\;=\;\frac{[64\,+\,6]\cdot(7)\,-\,(16)(3)}{(64\,+\,6)^2}\)

\(\displaystyle \L y'\;=\;\frac{(70)(7)\,-\,(16)(3)}{(70^2)}\)

\(\displaystyle \L y'\;=\;\frac{490\,-\,48}{4900}\;=\;\frac{442}{4900}\;=\;\frac{221}{2450}\)
 
Top