chain rule

tlc

New member
Joined
Dec 11, 2005
Messages
1
we have this table showing values:

MATH.jpg


then some equations we have to find the derivitive of.
i cannot for the life of me figure out what to do for these two:


1. f (x * f(x)) when x = -4

&

2. f(x) when x= -16
g(x) + 6

can someone help me?

i have tried:
1. f'(x * f(x))* x * f'(x) which didnt work
 
Hello, tlc!

      x     f(x)   g(x)   f(x)   g(x)\displaystyle \;\;\;x\;\;\,f(x)\;\,g(x)\;\,f'(x)\;\,g'(x)

  16      16      64      7         3\displaystyle \;-16\;\;\;16\;\;\;64\;\;\;7\;\;\;\;\,3

   4   16      16       2      4\displaystyle \;\,-4\;\,-16\;\;\;16\;\;\;\:2\;\;\;-4

      0    2        4        1        7\displaystyle \;\;\;0\;\;-2\;\;\;\;4\;\;\;\;1\;\;\;\;7

    16       3        6      2      1\displaystyle \;\;16\;\;\;\:3\;\;\;\;6\;\;\;-2\;\;\;-1

    64      0         2      2      2\displaystyle \;\;64\;\;\;0\;\;\;\;\,2\;\;\;-2\;\;\;-2

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1. Given:   y  =  f(xf(x))\displaystyle \;y\;=\;f(x\cdot f(x)). . . Find y\displaystyle y' when x=\displaystyle x\,=\,-4\displaystyle 4
Use the Chain Rule and the Product Rule, then substitute the values.

y  =  f[xf(x)][xf(x)+f(x)]\displaystyle y'\;=\;f'[x\cdot f(x)]\cdot\left[x\cdot f'(x)\,+\,f(x)\right]

y  =  f[\displaystyle y'\;=\;f'[-4f(\displaystyle 4\cdot f(-4)][\displaystyle 4)] \cdot [-4f(\displaystyle 4\cdot f'(-4)+f(\displaystyle 4)\,+\,f(-4)]\displaystyle 4) ]

y  =  f[(\displaystyle y'\;=\;f'[ (-4)(\displaystyle 4)(-16)][\displaystyle 16)] \cdot [-4(2)+(\displaystyle 4(2)\,+\,(-16)]\displaystyle 16)]

y  =  f(64)[\displaystyle y'\;=\;f'(64)\cdot[-816]\displaystyle 8\,-\,16]

y  =  (\displaystyle y'\;=\;(-1)[\displaystyle 1)\cdot[-24]\displaystyle 24]

y  =  24\displaystyle y'\;=\;24

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

2. Given:   y  =  f(x)g(x)+6\displaystyle \;y \;= \;\frac{f(x)}{g(x)\,+\,6} . . Find y\displaystyle y' when x=\displaystyle x\,=\,-16\displaystyle 16
Use the Quotient Rule, then substitute the values.

\(\displaystyle \L y'\;=\;\frac{\left[g(x)\,+\,6\right]\cdot f'(x)\,-\,f(x)\cdot g'(x)}{\left[g(x)\,+\,6\right]^2}\)

\(\displaystyle \L y'\;=\;\frac{[g(-16)\,+\,6]\cdot f'(-16)\,-\,f(-16)\cdot g'(-16)}{[g(-16)\,+\,6]^2}\)

\(\displaystyle \L y'\;=\;\frac{[64\,+\,6]\cdot(7)\,-\,(16)(3)}{(64\,+\,6)^2}\)

\(\displaystyle \L y'\;=\;\frac{(70)(7)\,-\,(16)(3)}{(70^2)}\)

\(\displaystyle \L y'\;=\;\frac{490\,-\,48}{4900}\;=\;\frac{442}{4900}\;=\;\frac{221}{2450}\)
 
Top