Can someone help me to prove the orthogonality in continuous case for Bessel Functions?

User13587

New member
Joined
Aug 27, 2022
Messages
4
I already prove the orthogonality condition of Bessel functions for discrete case (0,b)(0,b).

0bρJν(χνlρ/b)Jν(χνlρ/b)dρ=b22[Jν+1(χνl)]2δll\int_0^{b}\rho J_{\nu}(\chi_{\nu l}\rho/b)J_{\nu}(\chi_{\nu l'}\rho/b)d\rho = \frac{b^2}{2}[J_{\nu+1}(\chi_{\nu l})]^2\delta_{ll'}
Now, I need to prove that the orthogonality condition of Bessel Functions in the continuous case (0,)(0,\infty). can be written as:

0ρJν(kρ)Jν(kρ)dρ=1kδ(kk)\int_0^{\infty}\rho J_{\nu}(k\rho)J_{\nu}(k'\rho)d\rho = \frac{1}{k}\delta(k'-k)
With χνl=kb\chi_{\nu l} = kb and χνl´=kb\chi_{\nu l´} = k'b. But I don't know how to do it.


Thank you for your help!!!
 
Top