can i say that sin(2@-90) = cos(180-2@)?

Re: quick trig q

Hello, oded244!

Can i say that: sin(2β90)=cos(1802β)\displaystyle \:\sin(2\beta\,-\,90) \:=\:\cos(180\,-\,2\beta) ? . . . . Yes!

sin(2β90)  =  sin(2β)cos(90)sin(90)cos(2β)\displaystyle \sin(2\beta\,-\,90)\;=\;\sin(2\beta)\cos(90)\,-\,\sin(90)\cos(2\beta)

. . . . . . . . . =        sin(2β)0    1cos(2β)\displaystyle = \;\;\;\;\sin(2\beta)\,\cdot\,0\;-\;1\,\cdot\,\cos(2\beta)

. . . . . . . . . =                  cos(2β)\displaystyle =\;\;\;\;\;\;\;\;\;-\cos(2\beta)



cos(1802β)  =  cos(180)cos(2β)+sin(180)sin(2β)\displaystyle \cos(180 \,-\,2\beta)\;=\;\cos(180)\cos(2\beta)\,+\,\sin(180)\sin(2\beta)

. . . . . . . . . =      (1)cos(2β)  +  0sin(2β)\displaystyle = \;\;\;(-1)\,\cdot\,\cos(2\beta)\;+\;0\,\cdot\,\sin(2\beta)

. . . . . . . . . =                  cos(2β)\displaystyle =\;\;\;\;\;\;\;\;\;-\cos(2\beta)

 
Top