Hello, billybob_bonka!
My approach varies
slightly . . .
Can any one help me solve this?
\(\displaystyle 4,000e^{^{-400t}}\,-\,50,000e^{^{-1000t}}\,-\,64,000e^{^{-1600t}}\;=\;0\)
Divide by \(\displaystyle 2,000\;\cdots\;2e^{^{400t}}\,-\,25e^{^{-1000t}}\,-\,32e^{^{-1600t}}\;=\;0\)
Multiply by \(\displaystyle e^{^{1600t}}\;\cdots\;2e^{^{1200t}}\,-\,25e^{^{600t}}\,-\,32\;=\;0\)
We have a quadratic: \(\displaystyle \,2(e^{^{600t}})^2\,-\,25e^{^{600t}}\,-\,32\;=\;0\)
Let \(\displaystyle u\,=\,e^{^{600t}}\;\cdots\;2u^2\,-\,25u\,-\,32\;=\;0\)
Quadratic Formula: \(\displaystyle \:u\;=\;\frac{25\,\pm\,\sqrt{25^2\,-\,4(2)(-32)}}{2(2)} \;= \;\frac{25\,\pm\,\sqrt{881}}{4}\)
Then we have: \(\displaystyle \,e^{^{600t}}\:=\;\frac{25\,+\,\sqrt{881}}{4}\;\;\Rightarrow\;\;600t\:=\:\ln\left(\frac{25\,+\,\sqrt{881}}{4}\right)\)
Therefore: \(\displaystyle \:t\;=\;\frac{1}{600}\ln\left(\frac{25\,+\,\sqrt{881}}{4}\right)\;=\;0.004358723...\)