can anyone help solve 4000exp^(-400t)-50000exp^....

G

Guest

Guest
can any one help me solve this
4000exp^(-400t)-50000exp^(-1000t)-64000exp^(-1600t)=0
 
4000exp^(-400t)-50000exp^(-1000t)-64000exp^(-1600t)=0
...

\(\displaystyle 50000e^{-1000t} = 4000e^{-400t} - 64000e^{-1600t}\)

Let \(\displaystyle u = e^{-200t}\)

Then:

\(\displaystyle 50000u^5 = 4000u^2 - 64000u^8\)

\(\displaystyle u^2(-64000u^6 + 50000u^3 + 4000) = 0\)

Let \(\displaystyle x = u^3\)

Then:

-\(\displaystyle 1000u^2(64x^2 - 50x - 4) = 0\)

Then set -1000u^2 = 0 and 64x^2 - 50x - 4 = 0

Use quadratic equation from here...
 
Hello, billybob_bonka!

My approach varies slightly . . .

Can any one help me solve this?

\(\displaystyle 4,000e^{^{-400t}}\,-\,50,000e^{^{-1000t}}\,-\,64,000e^{^{-1600t}}\;=\;0\)
Divide by \(\displaystyle 2,000\;\cdots\;2e^{^{400t}}\,-\,25e^{^{-1000t}}\,-\,32e^{^{-1600t}}\;=\;0\)

Multiply by \(\displaystyle e^{^{1600t}}\;\cdots\;2e^{^{1200t}}\,-\,25e^{^{600t}}\,-\,32\;=\;0\)

We have a quadratic: \(\displaystyle \,2(e^{^{600t}})^2\,-\,25e^{^{600t}}\,-\,32\;=\;0\)

Let \(\displaystyle u\,=\,e^{^{600t}}\;\cdots\;2u^2\,-\,25u\,-\,32\;=\;0\)

Quadratic Formula: \(\displaystyle \:u\;=\;\frac{25\,\pm\,\sqrt{25^2\,-\,4(2)(-32)}}{2(2)} \;= \;\frac{25\,\pm\,\sqrt{881}}{4}\)

Then we have: \(\displaystyle \,e^{^{600t}}\:=\;\frac{25\,+\,\sqrt{881}}{4}\;\;\Rightarrow\;\;600t\:=\:\ln\left(\frac{25\,+\,\sqrt{881}}{4}\right)\)

Therefore: \(\displaystyle \:t\;=\;\frac{1}{600}\ln\left(\frac{25\,+\,\sqrt{881}}{4}\right)\;=\;0.004358723...\)
 
Top