can anyone help solve 4000exp^(-400t)-50000exp^....

G

Guest

Guest
can any one help me solve this
4000exp^(-400t)-50000exp^(-1000t)-64000exp^(-1600t)=0
 
4000exp^(-400t)-50000exp^(-1000t)-64000exp^(-1600t)=0
...

50000e1000t=4000e400t64000e1600t\displaystyle 50000e^{-1000t} = 4000e^{-400t} - 64000e^{-1600t}

Let u=e200t\displaystyle u = e^{-200t}

Then:

50000u5=4000u264000u8\displaystyle 50000u^5 = 4000u^2 - 64000u^8

u2(64000u6+50000u3+4000)=0\displaystyle u^2(-64000u^6 + 50000u^3 + 4000) = 0

Let x=u3\displaystyle x = u^3

Then:

-1000u2(64x250x4)=0\displaystyle 1000u^2(64x^2 - 50x - 4) = 0

Then set -1000u^2 = 0 and 64x^2 - 50x - 4 = 0

Use quadratic equation from here...
 
Hello, billybob_bonka!

My approach varies slightly . . .

Can any one help me solve this?

4,000e400t50,000e1000t64,000e1600t  =  0\displaystyle 4,000e^{^{-400t}}\,-\,50,000e^{^{-1000t}}\,-\,64,000e^{^{-1600t}}\;=\;0
Divide by 2,000    2e400t25e1000t32e1600t  =  0\displaystyle 2,000\;\cdots\;2e^{^{400t}}\,-\,25e^{^{-1000t}}\,-\,32e^{^{-1600t}}\;=\;0

Multiply by e1600t    2e1200t25e600t32  =  0\displaystyle e^{^{1600t}}\;\cdots\;2e^{^{1200t}}\,-\,25e^{^{600t}}\,-\,32\;=\;0

We have a quadratic: 2(e600t)225e600t32  =  0\displaystyle \,2(e^{^{600t}})^2\,-\,25e^{^{600t}}\,-\,32\;=\;0

Let u=e600t    2u225u32  =  0\displaystyle u\,=\,e^{^{600t}}\;\cdots\;2u^2\,-\,25u\,-\,32\;=\;0

Quadratic Formula: u  =  25±2524(2)(32)2(2)  =  25±8814\displaystyle \:u\;=\;\frac{25\,\pm\,\sqrt{25^2\,-\,4(2)(-32)}}{2(2)} \;= \;\frac{25\,\pm\,\sqrt{881}}{4}

Then we have: e600t=  25+8814        600t=ln(25+8814)\displaystyle \,e^{^{600t}}\:=\;\frac{25\,+\,\sqrt{881}}{4}\;\;\Rightarrow\;\;600t\:=\:\ln\left(\frac{25\,+\,\sqrt{881}}{4}\right)

Therefore: t  =  1600ln(25+8814)  =  0.004358723...\displaystyle \:t\;=\;\frac{1}{600}\ln\left(\frac{25\,+\,\sqrt{881}}{4}\right)\;=\;0.004358723...
 
Top