calculus

jlbc

New member
Joined
Aug 8, 2010
Messages
3
Ted, I have no clue how to even start...

Suppose log(b)2 = a and log(b)3 = c, find the following: log(b)1728b = ?. Thank you.
 
Given: logb2 = a and logb3 = c, find logb(1728b).\displaystyle Given: \ log_b 2 \ = \ a \ and \ log_b 3 \ = \ c, \ find \ log_b (1728b).

logb(1728b) = logb[(26)(33)(b)] = 6logb2+3logb3+logbb = 6a+3c+1.\displaystyle log_b(1728b) \ = \ log_b[(2^6)(3^3)(b)] \ = \ 6log_b 2+3log_b 3+log_b b \ = \ 6a+3c+1.

Factor, factor, factor, (FTA).\displaystyle Factor, \ factor, \ factor, \ (FTA).
 
Top