prove each identity
a)(sin(x))(sec(x))=(tan(x))
b)(cos^2(x))-(sin^2(x))=1-(2sin^2(x))
c)sec(x)-cos(x)=(sin(x))(tan(x))
d)(1-sin(t)/cos(t))=(cos(t)/1+sin(t))
e)(sec(t)-1/1-cos(t))=sec(t)
f)(1+tanx/sinx)-secx=csc(x)
g)tan(x)+cot(x)=(1/cos(x))(sin(x))
a)(sin(x))(sec(x))=(tan(x))
b)(cos^2(x))-(sin^2(x))=1-(2sin^2(x))
c)sec(x)-cos(x)=(sin(x))(tan(x))
d)(1-sin(t)/cos(t))=(cos(t)/1+sin(t))
e)(sec(t)-1/1-cos(t))=sec(t)
f)(1+tanx/sinx)-secx=csc(x)
g)tan(x)+cot(x)=(1/cos(x))(sin(x))