njmiano said:
find the area enclosed by the x axis and the curve
x = 1 + e^t
y = t - t^2
I am lost.
To learn how to set up and solve this sort of exercise, try the following:
. . . . .Paul's Online Math Notes: Parametric Equations
. . . . .Visual Calculus Tutorial
njmiano said:
I know the answer is the integral from ? to ? of (t-t^2) * e^t,
Shouldn't there be a "dt" in there somewhere? And what did you get when you found where the curve intersected the x-axis? (Obviously, "?" is not a valid integration limit. Instead, you found the x-intercepts. But what values did you arrive at?)
njmiano said:
After I integrate by parts I get: (e^t(t-t^2)) - (e^t(1-2t) - 2e^t
I will guess that you meant to have a close-paren after the "1 - 2t"...? Differentiating back, we get:
. . . . .(e[sup:2noj31tu]t[/sup:2noj31tu])(t - t[sup:2noj31tu]2[/sup:2noj31tu]) + (e[sup:2noj31tu]t[/sup:2noj31tu])(1 - 2t) - (e[sup:2noj31tu]t[/sup:2noj31tu])(1 - 2t) - (e[sup:2noj31tu]t[/sup:2noj31tu])(-2) - 2e[sup:2noj31tu]t[/sup:2noj31tu]
. . . . .e[sup:2noj31tu]t[/sup:2noj31tu]t - e[sup:2noj31tu]t[/sup:2noj31tu]t[sup:2noj31tu]2[/sup:2noj31tu] + e[sup:2noj31tu]t[/sup:2noj31tu] - 2e[sup:2noj31tu]t[/sup:2noj31tu]t - e[sup:2noj31tu]t[/sup:2noj31tu] + 2e[sup:2noj31tu]t[/sup:2noj31tu] + 2e[sup:2noj31tu]t[/sup:2noj31tu] - 2e[sup:2noj31tu]t[/sup:2noj31tu]
. . . . .-e[sup:2noj31tu]t[/sup:2noj31tu]t[sup:2noj31tu]2[/sup:2noj31tu] + e[sup:2noj31tu]t[/sup:2noj31tu]t - 2e[sup:2noj31tu]t[/sup:2noj31tu]t + e[sup:2noj31tu]t[/sup:2noj31tu] - e[sup:2noj31tu]t[/sup:2noj31tu] + 2e[sup:2noj31tu]t[/sup:2noj31tu] + 2e[sup:2noj31tu]t[/sup:2noj31tu] - 2e[sup:2noj31tu]t[/sup:2noj31tu]
. . . . .-e[sup:2noj31tu]t[/sup:2noj31tu]t[sup:2noj31tu]2[/sup:2noj31tu] - e[sup:2noj31tu]t[/sup:2noj31tu]t + 2e[sup:2noj31tu]t[/sup:2noj31tu]
This would not appear to match what you'd started with, so there may be some problem with your integration.
Eliz.