chucknorrisfish
New member
- Joined
- Oct 14, 2006
- Messages
- 23
Find the slope of the tangent line to the curve:
sqrt(4x+y) + sqrt(xy) = sqrt(39) + sqrt(56) at the point (8,7)
Here's what i've got....
.5(4x+y)^-.5(4+(dy/dx)) + .5(xy)^-.5 (y+x(dy/dx)) = 0
4+(dy/dx) + y+x(dy/dx) = 0
2sqrt(4x+y) 2sqrt(xy)
(dy/dx)(1/ 2sqrt(4x+y) + x/(2sqrt(xy))) = -4/2sqrt(4x+y) - y/ 2sqrt(xy)
These are the answers i've have gotten: .787963 , 12.94034929, and 18.62857182
am i doing this right?
sqrt(4x+y) + sqrt(xy) = sqrt(39) + sqrt(56) at the point (8,7)
Here's what i've got....
.5(4x+y)^-.5(4+(dy/dx)) + .5(xy)^-.5 (y+x(dy/dx)) = 0
4+(dy/dx) + y+x(dy/dx) = 0
2sqrt(4x+y) 2sqrt(xy)
(dy/dx)(1/ 2sqrt(4x+y) + x/(2sqrt(xy))) = -4/2sqrt(4x+y) - y/ 2sqrt(xy)
These are the answers i've have gotten: .787963 , 12.94034929, and 18.62857182
am i doing this right?