du bigger than dx in original problem
Here is a problem where the du value is bigger than the dx value in the top of the original problem. If anybody sees anything wrong with the problem or some mistake in my "converting \(\displaystyle du\) and \(\displaystyle dx\) into proper form" notation, then please say.
Formulas to be used:
Integration Power Rule \(\displaystyle \dfrac{x^{n + 1}}{n + 1}\) on the left fraction, and \(\displaystyle \int \dfrac{du}{\sqrt{u^{2} + a^{2}}} = \ln(u + \sqrt{u^{2} = a^{2}}) + C\) on the right one.
\(\displaystyle \int \dfrac{2x - 1}{\sqrt{9x^{2} + 16}}dx\)
\(\displaystyle \int \dfrac{2x}{\sqrt{9x^{2} + 16}} dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
Looking at left fraction:
\(\displaystyle u = 9x^{2}\)
\(\displaystyle du = 18x^{2} dx\)
\(\displaystyle 18xdu = 2dx\)
\(\displaystyle du = \dfrac{2x}{18x}dx\)
\(\displaystyle du = \dfrac{1}{9}dx\)
\(\displaystyle \int(9x^{2} + 16)^{-1/2} 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\) - Rewriting the left fraction.
Let's focus on the left fraction:
\(\displaystyle \dfrac{1}{9} \int \dfrac{(9x^{2} + 16)^{1/2}}{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
\(\displaystyle \int \dfrac{1}{9}(2) (9x^{2} + 16)^{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
\(\displaystyle \int \dfrac{2}{9}(9x^{2} + 16)^{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
Now let's look at the right fraction.
\(\displaystyle \int \dfrac{2}{9}(9x^{2} + 16)^{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{(3x)^{2} + (4)^{2}}}\)
\(\displaystyle u = 3x\)
\(\displaystyle du = 3 dx\)
\(\displaystyle 3du = dx\)
\(\displaystyle du = \dfrac{1}{3}dx\)
So now employing a \(\displaystyle \ln\) integral formula on the right we get:
\(\displaystyle \dfrac{2}{9}\sqrt{9x^{2} + 16} - \dfrac{1}{3}\ln(3x + \sqrt{9x^{2} + 16}) + C\) - Final answer
Here is a problem where the du value is bigger than the dx value in the top of the original problem. If anybody sees anything wrong with the problem or some mistake in my "converting \(\displaystyle du\) and \(\displaystyle dx\) into proper form" notation, then please say.
Formulas to be used:
Integration Power Rule \(\displaystyle \dfrac{x^{n + 1}}{n + 1}\) on the left fraction, and \(\displaystyle \int \dfrac{du}{\sqrt{u^{2} + a^{2}}} = \ln(u + \sqrt{u^{2} = a^{2}}) + C\) on the right one.
\(\displaystyle \int \dfrac{2x - 1}{\sqrt{9x^{2} + 16}}dx\)
\(\displaystyle \int \dfrac{2x}{\sqrt{9x^{2} + 16}} dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
Looking at left fraction:
\(\displaystyle u = 9x^{2}\)
\(\displaystyle du = 18x^{2} dx\)
\(\displaystyle 18xdu = 2dx\)
\(\displaystyle du = \dfrac{2x}{18x}dx\)
\(\displaystyle du = \dfrac{1}{9}dx\)
\(\displaystyle \int(9x^{2} + 16)^{-1/2} 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\) - Rewriting the left fraction.
Let's focus on the left fraction:
\(\displaystyle \dfrac{1}{9} \int \dfrac{(9x^{2} + 16)^{1/2}}{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
\(\displaystyle \int \dfrac{1}{9}(2) (9x^{2} + 16)^{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
\(\displaystyle \int \dfrac{2}{9}(9x^{2} + 16)^{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{9x^{2} + 16}}\)
Now let's look at the right fraction.
\(\displaystyle \int \dfrac{2}{9}(9x^{2} + 16)^{1/2} - 2x dx - \int \dfrac{dx}{\sqrt{(3x)^{2} + (4)^{2}}}\)
\(\displaystyle u = 3x\)
\(\displaystyle du = 3 dx\)
\(\displaystyle 3du = dx\)
\(\displaystyle du = \dfrac{1}{3}dx\)
So now employing a \(\displaystyle \ln\) integral formula on the right we get:
\(\displaystyle \dfrac{2}{9}\sqrt{9x^{2} + 16} - \dfrac{1}{3}\ln(3x + \sqrt{9x^{2} + 16}) + C\) - Final answer
Last edited: