calculus: integrate (ln(x^2 + 9x +1) dx

Re: calculus

Hello, Catherine!

\(\displaystyle \L\int\)ln(x2+9x+1)dx\displaystyle \ln(x^2\,+\,9x\,+\,1)\,dx

Integrate it "by parts" . . .

. . u=ln(x2+9x+1)      dv=dx.du=2x+9x2+9x+1dx      v=x\displaystyle \begin{array}{ccc}u\,=\,\ln(x^2\,+\,9x+1) & \;\;\; & dv\,= \,dx \\ . \\ du\,=\,\frac{2x\,+\,9}{x^2\,+\,9x\,+\,1}\,dx & \;\;\; & v\,=\,x\end{array}

We have: \(\displaystyle \;x\cdot\ln(x^2\,+\,9x\,+\,1)\,-\,\L\int\)x2x+9x2+9x+1dx\displaystyle x\cdot\frac{2x\,+\,9}{x^2\,+\,9x\,+\,1}\,dx

. . . . . \(\displaystyle = \;x\cdot\ln(x^2\,+\,9x\,+\,1)\,-\,\L\int\)2x2+9xx2+9x+1dx\displaystyle \frac{2x^2\,+\,9x}{x^2\,+\,9x\,+\,1}\,dx

. . . . . \(\displaystyle = \;x\cdot\ln(x^2\,+\,9x\,+\,1)\,-\,\L\int\)(29x+2x2+9x+1)dx\displaystyle \left(2\,-\,\frac{9x\,+\,2}{x^2\,+\,9x\,+\,1}\right)\,dx

Can you finish it now/

 
Top