\(\displaystyle \begin{gathered} y = \frac{{x^3 }}{{3^x }} = \left( {x^3 } \right)\left( {3^{ - x} } \right) \hfill \\ y' = \left( {3x^2 } \right)\left( {3^{ - x} } \right) + \left( {x^3 } \right)\left[ { - 3^{ - x} \left( {\ln (3)} \right)} \right] \hfill \\ \end{gathered}\)venialove said:find y' if y = x^3/3^x
\(\displaystyle \text{Find }y'\,\text{ if }\,y \:= \:\frac{x^3}{3^x}\)
venialove said:find y' if y = x^3/3^x
My work"
x^3= y'= 3x^2<<< what is this - 2 "=" signs?
3x=y'=3^x(ln3)<<< what is this - 2 "=" signs?
=3x^2/3^x(ln3)
You need to apply:
\(\displaystyle f'(\frac{u}{v})\, = \, \frac{u'\cdot v \, - \, v'\cdot u}{v^2}\)