calculus 1: differentiation

Mel Mitch

New member
Joined
Jul 19, 2009
Messages
39
SMALL CHANGES...please guide me in the problem:

Given that y=x^-1/3 use calculus to determine an approximate value for 1/0.9^1/3.
 
Mel Mitch said:
SMALL CHANGES...please guide me in the problem:

Given that y=x^-1/3 use calculus to determine an approximate value for 1/0.9^1/3.

Use Taylor's Theorem

Please show us your work, indicating exactly where you are stuck - so that we know where to begin to help you.
 
Hello, Mel Mitch!

We are expected to use differentials . . .


Given that y=x-13,   use calculus to determine an approximate value for: 10.913\displaystyle \text{Given that }\:y\:=\:x^{\text{-}\frac{1}{3}},\;\text{ use calculus to determine an approximate value for: }\:\frac{1}{0.9^{\frac{1}{3}}}

We have: f(x)=x-13\displaystyle \text{We have: }\:f(x) \:=\:x^{\text{-}\frac{1}{3}}
. . Then: df  =  13x-43dx  =  dx3x43\displaystyle \text{Then: }\:df \;=\;-\tfrac{1}{3}x^{\text{-}\frac{4}{3}}dx \;=\;-\frac{dx}{3x^{\frac{4}{3}}}

Let: x=1,  dx=0.1\displaystyle \text{Let: }\:x \:=\:1,\;dx \:=\:-0.1


Then we have: f(1)=1-13=1\displaystyle \text{Then we have: }\:f(1) \:=\:1^{\text{-}\frac{1}{3}} \:=\:1

. .  and:   df(1)  =  -0.13(143)  =  130\displaystyle \text{ and: }\;df(1) \;=\;-\frac{\text{-}0.1} {3(1^{\frac{4}{3}}) } \;=\;\frac{1}{30}


Therefore:   10.913        1+130    =    3130    =    1.03333...\displaystyle \text{Therefore: }\;\frac{1}{0.9^{\frac{1}{3}}} \;\;\approx\;\; 1 + \frac{1}{30} \;\;=\;\;\frac{31}{30} \;\;=\;\;\boxed{1.03333...}


[Actual value: 10.93  =  1.035744169...]\displaystyle \left[\text{Actual value: }\:\frac{1}{\sqrt[3]{0.9}} \;=\;1.035744169...\right]

 
Top