Qwertyuiop[]
Junior Member
- Joined
- Jun 1, 2022
- Messages
- 123
I have another question: [imath]\lim _{n\to \infty }\left(\frac{n\cdot sin\left(n!\right)}{n^2+1}\right)[/imath]. I used the squeeze theorem to find the limit because [imath]-1\le sin\left(x\right)\le 1[/imath].
[imath]-1\le sin\left(n!\right)\le 1[/imath]
[imath]\lim _{n\to \infty }\left(\frac{-n}{n^2+1}\right)\le \lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1}\le \lim \:_{n\to \:\infty \:}\left(\frac{n}{n^2+1}\right)[/imath] and the limit of [imath]\left(\frac{-n}{n^2+1}\right)[/imath] and [imath]\left(\frac{n}{n^2+1}\right)[/imath] as n goes to infnity is 0. So [imath]\lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1} =0[/imath]. But when i check the answer on symbolab , it says "Does not exist". What's wrong with what I did?
[imath]-1\le sin\left(n!\right)\le 1[/imath]
[imath]\lim _{n\to \infty }\left(\frac{-n}{n^2+1}\right)\le \lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1}\le \lim \:_{n\to \:\infty \:}\left(\frac{n}{n^2+1}\right)[/imath] and the limit of [imath]\left(\frac{-n}{n^2+1}\right)[/imath] and [imath]\left(\frac{n}{n^2+1}\right)[/imath] as n goes to infnity is 0. So [imath]\lim \:_{n\to \:\infty \:}\frac{n\cdot sin\left(n!\right)}{n^2+1} =0[/imath]. But when i check the answer on symbolab , it says "Does not exist". What's wrong with what I did?