Calculate the area cut by the given lines:
[math]x=-1,\,\,\,y=0,\,\,\,y=\arctan(x),\,\,\,x=\sqrt{3}\\\\A=\int_{-1}^0[0-\arctan(x)]dx+\int_0^{\sqrt{3}}[\arctan(x)-0]dx=\frac{\pi}{4}-\frac{3}{2}\ln(2)+\frac{\sqrt{3}\pi}{3}\\\\\text{but looking at the graph, we see that:}\\\\\int_{-1}^0[0-\arctan(x)]dx+\int_{0}^1[\arctan(x)-0]dx=0\\\text{because}\,\,\arctan(x)\,\,\text{is an odd function}\\\text{so the area should be:}\\\\A=\int_{1}^{\sqrt{3}}[\arctan(x)-0]dx=\frac{\sqrt{3}\pi}{3}-\frac{1}{2}\ln(2)-\frac{\pi}{4}\\\\\text{Finally we got two different aswers, can you guys point my mistake?}[/math]
![forum.png forum.png](https://www.freemathhelp.com/forum/data/attachments/28/28373-de0bbc412aae70cd98737cfcd850554c.jpg)
[math]x=-1,\,\,\,y=0,\,\,\,y=\arctan(x),\,\,\,x=\sqrt{3}\\\\A=\int_{-1}^0[0-\arctan(x)]dx+\int_0^{\sqrt{3}}[\arctan(x)-0]dx=\frac{\pi}{4}-\frac{3}{2}\ln(2)+\frac{\sqrt{3}\pi}{3}\\\\\text{but looking at the graph, we see that:}\\\\\int_{-1}^0[0-\arctan(x)]dx+\int_{0}^1[\arctan(x)-0]dx=0\\\text{because}\,\,\arctan(x)\,\,\text{is an odd function}\\\text{so the area should be:}\\\\A=\int_{1}^{\sqrt{3}}[\arctan(x)-0]dx=\frac{\sqrt{3}\pi}{3}-\frac{1}{2}\ln(2)-\frac{\pi}{4}\\\\\text{Finally we got two different aswers, can you guys point my mistake?}[/math]
![forum.png forum.png](https://www.freemathhelp.com/forum/data/attachments/28/28373-de0bbc412aae70cd98737cfcd850554c.jpg)