Calculate distance

JJ007

New member
Joined
Nov 7, 2009
Messages
27
Calculate the distance from the point (-1,2,3) to the line x=2-t, y=1, z=1+t

So U=<-1,2,3> and P= (2,1,1)
PU= <-3,-1,-2>
Cross product PU x u= <1,-11,-7> ?
\(\displaystyle D=\frac{||PU\ x\ u||}{||u||}=\frac {\sqrt{171}}{\sqrt{14}}?\)
 
From the direction numbers, we know that the direction vector is \(\displaystyle u=[-1,1,1]\)

To find a point on a line, let t=0 and get:

\(\displaystyle P=[2,1,1]\)

\(\displaystyle PQ=[-1-2, 2-1, 3-1]=[-3,1,2]\)

Cross Product:

\(\displaystyle PQ\times u=\begin{vmatrix}i&j&k\\-3&1&2\\-1&1&1\end{vmatrix}\)

\(\displaystyle =-i+j-2k\)

\(\displaystyle ||PQ\times u||=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}\)

\(\displaystyle ||u||=\sqrt{3}\)

\(\displaystyle \frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2}\)

Check my figures. The method is sound, but it is easy to make an arithmetic error.
 
galactus said:
From the direction numbers, we know that the direction vector is \(\displaystyle u=[-1,1,1]\)

To find a point on a line, let t=0 and get:

\(\displaystyle P=[2,1,1]\)

\(\displaystyle PQ=[-1-2, 2-1, 3-1]=[-3,1,2]\)

Cross Product:

\(\displaystyle PQ\times u=\begin{vmatrix}i&j&k\\-3&1&2\\-1&1&1\end{vmatrix}\)

\(\displaystyle =-i+j-2k\)

\(\displaystyle ||PQ\times u||=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}\)

\(\displaystyle ||u||=\sqrt{3}\)

\(\displaystyle \frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2}\)

Check my figures. The method is sound, but it is easy to make an arithmetic error.

For PQ I got [-3,0,0]

\(\displaystyle D=\frac{\sqrt{18}}{\sqrt{3}}\)

The multiple choice answers are:
\(\displaystyle a.\frac{5}{\sqrt{2}}\)
\(\displaystyle b.\sqrt{\frac{3}{14}\)
\(\displaystyle c.\frac{5}{\sqrt{14}}\)
\(\displaystyle d.\sqrt{\frac{3}{2}}\)
e.None of the above

I'm guessing e. ?
 
\(\displaystyle Q \ = \ (-1,2,3), \ Line \ = \ x \ = \ 2-t,y \ = \ 1, \ z \ = \ 1+t\)

\(\displaystyle u \ = \ <-1,0,1>, \ when \ t \ = \ 0, \ P \ = \ (2,1,1)\)

\(\displaystyle PQ \ = \ <3,-1,-2>\)

\(\displaystyle PQ \ X \ u \ = \ <-1,-1,-1>\)

\(\displaystyle Hence, \ D \ = \ \frac{\sqrt3}{\sqrt2} \ = \ d\)
 
Yep, there it is. Thanks Glenn. All it takes is a sign. :oops:
 
Top