From the direction numbers, we know that the direction vector is
u = [ − 1 , 1 , 1 ] \displaystyle u=[-1,1,1] u = [ − 1 , 1 , 1 ]
To find a point on a line, let t=0 and get:
P = [ 2 , 1 , 1 ] \displaystyle P=[2,1,1] P = [ 2 , 1 , 1 ]
P Q = [ − 1 − 2 , 2 − 1 , 3 − 1 ] = [ − 3 , 1 , 2 ] \displaystyle PQ=[-1-2, 2-1, 3-1]=[-3,1,2] P Q = [ − 1 − 2 , 2 − 1 , 3 − 1 ] = [ − 3 , 1 , 2 ]
Cross Product:
P Q × u = ∣ i j k − 3 1 2 − 1 1 1 ∣ \displaystyle PQ\times u=\begin{vmatrix}i&j&k\\-3&1&2\\-1&1&1\end{vmatrix} P Q × u = ∣ ∣ ∣ ∣ ∣ ∣ ∣ i − 3 − 1 j 1 1 k 2 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣
= − i + j − 2 k \displaystyle =-i+j-2k = − i + j − 2 k
∣ ∣ P Q × u ∣ ∣ = ( − 1 ) 2 + 1 2 + ( − 2 ) 2 = 6 \displaystyle ||PQ\times u||=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6} ∣ ∣ P Q × u ∣ ∣ = ( − 1 ) 2 + 1 2 + ( − 2 ) 2 = 6
∣ ∣ u ∣ ∣ = 3 \displaystyle ||u||=\sqrt{3} ∣ ∣ u ∣ ∣ = 3
6 3 = 2 \displaystyle \frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2} 3 6 = 2
Check my figures. The method is sound, but it is easy to make an arithmetic error.