From the direction numbers, we know that the direction vector is \(\displaystyle u=[-1,1,1]\)
To find a point on a line, let t=0 and get:
\(\displaystyle P=[2,1,1]\)
\(\displaystyle PQ=[-1-2, 2-1, 3-1]=[-3,1,2]\)
Cross Product:
\(\displaystyle PQ\times u=\begin{vmatrix}i&j&k\\-3&1&2\\-1&1&1\end{vmatrix}\)
\(\displaystyle =-i+j-2k\)
\(\displaystyle ||PQ\times u||=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}\)
\(\displaystyle ||u||=\sqrt{3}\)
\(\displaystyle \frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2}\)
Check my figures. The method is sound, but it is easy to make an arithmetic error.