Calculate distance

JJ007

New member
Joined
Nov 7, 2009
Messages
27
Calculate the distance from the point (-1,2,3) to the line x=2-t, y=1, z=1+t

So U=<-1,2,3> and P= (2,1,1)
PU= <-3,-1,-2>
Cross product PU x u= <1,-11,-7> ?
D=PU x uu=17114?\displaystyle D=\frac{||PU\ x\ u||}{||u||}=\frac {\sqrt{171}}{\sqrt{14}}?
 
From the direction numbers, we know that the direction vector is u=[1,1,1]\displaystyle u=[-1,1,1]

To find a point on a line, let t=0 and get:

P=[2,1,1]\displaystyle P=[2,1,1]

PQ=[12,21,31]=[3,1,2]\displaystyle PQ=[-1-2, 2-1, 3-1]=[-3,1,2]

Cross Product:

PQ×u=ijk312111\displaystyle PQ\times u=\begin{vmatrix}i&j&k\\-3&1&2\\-1&1&1\end{vmatrix}

=i+j2k\displaystyle =-i+j-2k

PQ×u=(1)2+12+(2)2=6\displaystyle ||PQ\times u||=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}

u=3\displaystyle ||u||=\sqrt{3}

63=2\displaystyle \frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2}

Check my figures. The method is sound, but it is easy to make an arithmetic error.
 
galactus said:
From the direction numbers, we know that the direction vector is u=[1,1,1]\displaystyle u=[-1,1,1]

To find a point on a line, let t=0 and get:

P=[2,1,1]\displaystyle P=[2,1,1]

PQ=[12,21,31]=[3,1,2]\displaystyle PQ=[-1-2, 2-1, 3-1]=[-3,1,2]

Cross Product:

PQ×u=ijk312111\displaystyle PQ\times u=\begin{vmatrix}i&j&k\\-3&1&2\\-1&1&1\end{vmatrix}

=i+j2k\displaystyle =-i+j-2k

PQ×u=(1)2+12+(2)2=6\displaystyle ||PQ\times u||=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}

u=3\displaystyle ||u||=\sqrt{3}

63=2\displaystyle \frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2}

Check my figures. The method is sound, but it is easy to make an arithmetic error.

For PQ I got [-3,0,0]

D=183\displaystyle D=\frac{\sqrt{18}}{\sqrt{3}}

The multiple choice answers are:
a.52\displaystyle a.\frac{5}{\sqrt{2}}
\(\displaystyle b.\sqrt{\frac{3}{14}\)
c.514\displaystyle c.\frac{5}{\sqrt{14}}
d.32\displaystyle d.\sqrt{\frac{3}{2}}
e.None of the above

I'm guessing e. ?
 
Q = (1,2,3), Line = x = 2t,y = 1, z = 1+t\displaystyle Q \ = \ (-1,2,3), \ Line \ = \ x \ = \ 2-t,y \ = \ 1, \ z \ = \ 1+t

u = <1,0,1>, when t = 0, P = (2,1,1)\displaystyle u \ = \ <-1,0,1>, \ when \ t \ = \ 0, \ P \ = \ (2,1,1)

PQ = <3,1,2>\displaystyle PQ \ = \ <3,-1,-2>

PQ X u = <1,1,1>\displaystyle PQ \ X \ u \ = \ <-1,-1,-1>

Hence, D = 32 = d\displaystyle Hence, \ D \ = \ \frac{\sqrt3}{\sqrt2} \ = \ d
 
Yep, there it is. Thanks Glenn. All it takes is a sign. :oops:
 
Top