find the integral (1-6x)e(3x-9x^2)dx
H heather chisholm New member Joined Dec 10, 2005 Messages 5 Dec 10, 2005 #1 find the integral (1-6x)e(3x-9x^2)dx
H heather chisholm New member Joined Dec 10, 2005 Messages 5 Dec 10, 2005 #2 find the integral 7x^6dx/(4+x^7)^4
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Dec 10, 2005 #3 Hello, Heather chisholm! More substitution . . . \(\displaystyle \L\:\int (1\,-\,6x)\cdot e^{(3x-9x^2)}\,dx\) Let u = 3x−9x2 ⇒ du = (3−18x) dx ⇒ dx=du3(1−6x)\displaystyle u\,=\,3x-9x^2\;\;\Rightarrow\;\;du\,=\,(3-18x)\,dx\;\;\Rightarrow\;\;dx = \frac{du}{3(1-6x)}u=3x−9x2⇒du=(3−18x)dx⇒dx=3(1−6x)du Substitute: \(\displaystyle \L\;\int(1-6x)e^u\,\left(\frac{du}{3(1-6x)}\right)\;= \;\frac{1}{3}\int e^u\,du\;=\;\frac{1}{3}e^u\,+\,C\) Back-substitute: \(\displaystyle \L\;\frac{1}{3}e^{(3x-9x^2)}\,+\,C\)
Hello, Heather chisholm! More substitution . . . \(\displaystyle \L\:\int (1\,-\,6x)\cdot e^{(3x-9x^2)}\,dx\) Let u = 3x−9x2 ⇒ du = (3−18x) dx ⇒ dx=du3(1−6x)\displaystyle u\,=\,3x-9x^2\;\;\Rightarrow\;\;du\,=\,(3-18x)\,dx\;\;\Rightarrow\;\;dx = \frac{du}{3(1-6x)}u=3x−9x2⇒du=(3−18x)dx⇒dx=3(1−6x)du Substitute: \(\displaystyle \L\;\int(1-6x)e^u\,\left(\frac{du}{3(1-6x)}\right)\;= \;\frac{1}{3}\int e^u\,du\;=\;\frac{1}{3}e^u\,+\,C\) Back-substitute: \(\displaystyle \L\;\frac{1}{3}e^{(3x-9x^2)}\,+\,C\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Dec 10, 2005 #4 Hello, Heather! I hope you're getting the idea of Substitution . . . \(\displaystyle \L\int\frac{7x^6}{(4\,+\,x^7)^4}\,dx\) Let u = 4+x7 ⇒ dx = 7x6 dx ⇒ dx = du7x6\displaystyle u\,=\,4+x^7\;\;\Rightarrow\;\;dx\,=\,7x^6\,dx\;\;\Rightarrow\;\;dx\,=\,\frac{du}{7x^6}u=4+x7⇒dx=7x6dx⇒dx=7x6du Substitute: \(\displaystyle \L\;\int\frac{7x^6}{u^4}\,\left(\frac{du}{7x^6}\right) \;=\;\int u^{-4}du\;=\;\frac{u^{-3}}{-3}\,+\,C\;=\;-\frac{1}{3u^3}\,+\,C\) Back-substitute: \(\displaystyle \L\;-\frac{1}{3(4\,+\,x^7)^3}\,+\,C\)
Hello, Heather! I hope you're getting the idea of Substitution . . . \(\displaystyle \L\int\frac{7x^6}{(4\,+\,x^7)^4}\,dx\) Let u = 4+x7 ⇒ dx = 7x6 dx ⇒ dx = du7x6\displaystyle u\,=\,4+x^7\;\;\Rightarrow\;\;dx\,=\,7x^6\,dx\;\;\Rightarrow\;\;dx\,=\,\frac{du}{7x^6}u=4+x7⇒dx=7x6dx⇒dx=7x6du Substitute: \(\displaystyle \L\;\int\frac{7x^6}{u^4}\,\left(\frac{du}{7x^6}\right) \;=\;\int u^{-4}du\;=\;\frac{u^{-3}}{-3}\,+\,C\;=\;-\frac{1}{3u^3}\,+\,C\) Back-substitute: \(\displaystyle \L\;-\frac{1}{3(4\,+\,x^7)^3}\,+\,C\)