Hello, mr.burger!
So you <u>are</u> in self-study . . . that explains your
spectrum of questions.
Find the intercepts, local extrema and inflection points of y = x<sup>3</sup> + 4x<sup>2</sup> + 4x
.
To find y-intercepts, let x = 0:
. y
.=
.0<sup>3</sup> + 4·0<sup>2</sup> + 4·0
.=
.0
. . . The y-intercept is at:
.(0,0)
To find x-intercepts, let y = 0:
. x<sup>3</sup> + 4x<sup>2</sup> + 4x
. =
. 0
. . . We have:
. x(x<sup>2</sup> + 4x + 4)
.=
.x(x + 2)<sup>2</sup>
. =
. 0
. . . Hence, we get:
. x = 0, -2
. . . The x-intercepts are:
. (0,0), (-2,0)
For extrema, set y' = 0 and solve:
. y'
.=
.3x<sup>2</sup> + 8x + 4
. =
. 0
. . . We get two
critical values:
. x = -2, -2/3
To test them, use y''
.=
.6x + 8
When x = -2:
. y''
.=
.6(-2) + 8
.=
.-4 . . . negative, concave down: ∩ . . . local maximum at (-2,0)
When x = -2/3:
. y''
.=
.6(-2/3) + 8 .= .+4 . . . positive, concave up: U . . . local minimum at (-2/3,-32/27)
For inflection points: solve y'' = 0
. . . We have:
. 6x + 8
.=
.0
. . . Hence, there is an inflection point at:
.x = -4/3