lancer6238
New member
- Joined
- Apr 4, 2007
- Messages
- 3
Hi all, I need help with a question.
Let B(t), t>= 0 be a standard Brownian motion and let u, v, w > 0. Calculate E[B(u) B(u+v) B(u+v+w)], using the fact that for a zero mean normal random variable Z, E[Z^3] = 0.
I tried to do this question by breaking up the brownian motions, i.e. B(u+v) = B(u) + (B(u+v) - B(u)) and B(u+v+w) = B(u) + (B(u+v) - B(u)) + (B(u+v+w) - B(u+v)), and then putting them into the expectation.
I got
E[B(u) B(u+v) B(u+v+w)] = E[ B(u) (B(u) + (B(u+v) - B(u))) (B(u) + (B(u+v) - B(u)) + (B(u+v+w) - B(u+v))) ]
and then expanding the terms, I got
E[B(u)^3] + E[ B(u)^2 (B(u+v) - B(u)) ] + E[ B(u)^2 (B(u+v+w) - B(u+v)) ] +
E[ B(u)^2 (B(u+v) - B(u)) ] + E[ B(u) (B(u+v) - B(u))^2 ] + E[B(u)] E[B(u+v) - B(u)] E[B(u+v+w) - B(u+v)]
= 2 E[ B(u)^2 (B(u+v) - B(u)) ] + E[ B(u)^2 (B(u+v+w) - B(u+v)) ] + E[ B(u) (B(u+v) - B(u))^2 ]
since the brownian motions in the last term are independent of one another and E[B(u)] = 0.
Up to here, I'm stuck as I'm not sure how to handle the square terms.
Am I correct up to this point? If I am, how should I continue?
Thank you.
Regards,
Rayne
Let B(t), t>= 0 be a standard Brownian motion and let u, v, w > 0. Calculate E[B(u) B(u+v) B(u+v+w)], using the fact that for a zero mean normal random variable Z, E[Z^3] = 0.
I tried to do this question by breaking up the brownian motions, i.e. B(u+v) = B(u) + (B(u+v) - B(u)) and B(u+v+w) = B(u) + (B(u+v) - B(u)) + (B(u+v+w) - B(u+v)), and then putting them into the expectation.
I got
E[B(u) B(u+v) B(u+v+w)] = E[ B(u) (B(u) + (B(u+v) - B(u))) (B(u) + (B(u+v) - B(u)) + (B(u+v+w) - B(u+v))) ]
and then expanding the terms, I got
E[B(u)^3] + E[ B(u)^2 (B(u+v) - B(u)) ] + E[ B(u)^2 (B(u+v+w) - B(u+v)) ] +
E[ B(u)^2 (B(u+v) - B(u)) ] + E[ B(u) (B(u+v) - B(u))^2 ] + E[B(u)] E[B(u+v) - B(u)] E[B(u+v+w) - B(u+v)]
= 2 E[ B(u)^2 (B(u+v) - B(u)) ] + E[ B(u)^2 (B(u+v+w) - B(u+v)) ] + E[ B(u) (B(u+v) - B(u))^2 ]
since the brownian motions in the last term are independent of one another and E[B(u)] = 0.
Up to here, I'm stuck as I'm not sure how to handle the square terms.
Am I correct up to this point? If I am, how should I continue?
Thank you.
Regards,
Rayne