Bring these logical expressions to their simplest form

Mikko

New member
Joined
Oct 12, 2019
Messages
3
1. (p⋀q) ⋁∼(∼p⇒q)
2. (p⋁q) ⋁∼(∼p⇒q)
3. (p⇒((∼p⋁q)⇒p))∧q
4. p⋀q((p⋁q)⋀∼q)→q)
5. p⋁∼q⋁∼ p⋁(q⋀∼p)⋁(∼q⋀p)
 
for example
∼p=>∼∼q
(~p ⇒ ~~q) ⇔ (~p ⇒ q) // bo ~~q ⇔ q
 
1. (p⋀q) ⋁∼(∼p⇒q)
2. (p⋁q) ⋁∼(∼p⇒q)
3. (p⇒((∼p⋁q)⇒p))∧q
4. p⋀q((p⋁q)⋀∼q)→q)
5. p⋁∼q⋁∼ p⋁(q⋀∼p)⋁(∼q⋀p)
Please share your work/thoughts about this assignment.

Please follow the rules of posting in this forum, as enunciated at:

READ BEFORE POSTING
 

Attachments

  • 1570890700146.png
    1570890700146.png
    3.8 MB · Views: 1
2. (p ∨ q) ∨ ~(~p→q)
(p ∨ q) ∨ ~(~~p ∨ q)
(p ∨ q) ∨ ~(p ∨ q)
ok?
 
1. (p⋀q) ⋁∼(∼p⇒q)
2. (p⋁q) ⋁∼(∼p⇒q)
3. (p⇒((∼p⋁q)⇒p))∧q
4. p⋀q((p⋁q)⋀∼q)→q)
5. p⋁∼q⋁∼ p⋁(q⋀∼p)⋁(∼q⋀p)
This is a very, very tedious question. You will have to use distribution multiple times.
I will tell you that I would use \(\displaystyle (p \Rightarrow q) \equiv (\neg p \vee q)\), in most of these.
 
Top