Binomial Series?

huntsiekfind

New member
Joined
May 22, 2009
Messages
7
Use the binomial series to approximate ?6 to within .005 Hint is square root 6/2 = square root over the fraction 3/2, so square root 6 = 2 square root over fraction 3/2 = 2 square root over 1+1/2

Help would be greatly appreciated.
 
6 = 2.44948974278.... (TI89).\displaystyle \sqrt6 \ = \ 2.44948974278.... \ (TI-89).

6 = 2(1+12) = 2(1+12)1/2.\displaystyle \sqrt6 \ = \ 2\sqrt(1+\frac{1}{2}) \ = \ 2(1+\frac{1}{2})^{1/2}.

Hence, with only four iterations, we get:\displaystyle Hence, \ with \ only \ four \ iterations, \ we \ get:

2[1+.25+[(.5)(.5)(.25)]2+[(.5)(.5)(1.5)(.125)]6] = 2.453625\displaystyle 2[1+.25+\frac{[(.5)(-.5)(.25)]}{2}+\frac{[(.5)(-.5)(-1.5)(.125)]}{6}] \ = \ 2.453625

2.4536252.44948974278 = .00363525722, need about two more iterations.\displaystyle 2.453625-2.44948974278 \ = \ .00363525722, \ need \ about \ two \ more \ iterations.

Note: Binomial Series = (1+x)k = 1+kx+k(k1)x22! + k(k1)(k2)x33! + ...\displaystyle Note: \ Binomial \ Series \ = \ (1+x)^{k} \ = \ 1+kx+\frac{k(k-1)x^{2}}{2!} \ + \ \frac{k(k-1)(k-2)x^{3}}{3!} \ + \ ...

Interval of Convergence is 1<x<1, and binomial series is valid for noninteger values of k.\displaystyle Interval \ of \ Convergence \ is \ -1<x<1, \ and \ binomial \ series \ is \ valid \ for \ noninteger \ values \ of \ k.
 
I believe the error should be calculated from the upper bound of error in Taylor series.
 
Top