Binomial expansion: find T_3 and T_7 for (2x + 1/2)^7

M4STR0k

New member
Joined
Aug 19, 2016
Messages
13
The question:

\(\displaystyle \mbox{In the expansion }\, \left(2x\, +\, \dfrac{1}{2}\right)^7,\, \mbox{ find }\, T_3\, \mbox{ and }\, T_7\, \mbox{ according to the decending power}\)

\(\displaystyle x,\, \mbox{ if }\, T_3\, =\, T_7\, \mbox{ Find }\, x.\)



The answer i got:

\(\displaystyle T_3\, =\, {}^7C_2\, (2x)^5\, \left(\dfrac{1}{2}\right)^2\, =\, {}^7C_2\, 32x^5\, \dfrac{1}{4}\)

\(\displaystyle T_7\, =\, {}^2C_6\, (2x)\, \left(\dfrac{1}{2}\right)^6\, =\, {}^7C_6\, 2x\, \dfrac{1}{64}\)

Any help ..
 

Attachments

  • image.jpg
    image.jpg
    8.5 KB · Views: 9
  • image.jpg
    image.jpg
    14.5 KB · Views: 9
Last edited by a moderator:
The question:

\(\displaystyle \mbox{In the expansion }\, \left(2x\, +\, \dfrac{1}{2}\right)^7,\, \mbox{ find }\, T_3\, \mbox{ and }\, T_7\, \mbox{ according to the decending power}\)

\(\displaystyle x,\, \mbox{ if }\, T_3\, =\, T_7\, \mbox{ Find }\, x.\)



The answer i got:

\(\displaystyle T_3\, =\, {}^7C_2\, (2x)^5\, \left(\dfrac{1}{2}\right)^2\, =\, {}^7C_2\, 32x^5\, \dfrac{1}{4}\)

\(\displaystyle T_7\, =\, {}^2C_6\, (2x)\, \left(\dfrac{1}{2}\right)^6\, =\, {}^7C_6\, 2x\, \dfrac{1}{64}\)

Any help ..
What help do you need?
 
Last edited by a moderator:
Is it okay or not ? want to check ...
It's an acceptable start. Now finish the first part, and attempt the second part.

When you reply, please provide the full text of the exercise. Some of the text appears to have been cut off in your first image.

Thank you! ;)
 
The question:

\(\displaystyle \mbox{In the expansion }\, \left(2x\, +\, \dfrac{1}{2}\right)^7,\, \mbox{ find }\, T_3\, \mbox{ and }\, T_7\, \mbox{ according to the decending power}\)

\(\displaystyle x,\, \mbox{ if }\, T_3\, =\, T_7\, \mbox{ Find }\, x.\)



The answer i got:

\(\displaystyle T_3\, =\, {}^7C_2\, (2x)^5\, \left(\dfrac{1}{2}\right)^2\, =\, {}^7C_2\, 32x^5\, \dfrac{1}{4}\)

\(\displaystyle T_7\, =\, {}^2C_6\, (2x)\, \left(\dfrac{1}{2}\right)^6\, =\, {}^7C_6\, 2x\, \dfrac{1}{64}\)

Any help ..


So the next step would be:

\(\displaystyle {}^7C_2\, 32x^5\, \dfrac{1}{4} \ = \, {}^7C_6\, 2x\, \dfrac{1}{64}\)

\(\displaystyle {}^7C_2\, 16x^4\, \ = \, {}^7C_6\, \, \dfrac{1}{16}\)

\(\displaystyle {}^7C_2\, (4x)^4\, \ = \, {}^7C_6\,\)

and continue....
 
Top