If the middle term in the expansion of
. . . . .\(\displaystyle \left(x^2\, +\, \dfrac{1}{2x}\right)^{10}\)
...equals 28/27, find the value of x.
Point I'm stuck at:
. . .Middle term = (10 + 2)/2 = 6
. . .\(\displaystyle T_6\, =\, {}^{10} C_5\, x^{10}\, \left(\dfrac{1}{2x}\right)^5\, =\, \dfrac{28}{27}\)
. . .\(\displaystyle T_6\, =\, {}^{10} C_5\, x^{10}\, \dfrac{1}{32x^5}\, =\, \dfrac{28}{27}\)
. . . . .\(\displaystyle \left(x^2\, +\, \dfrac{1}{2x}\right)^{10}\)
...equals 28/27, find the value of x.
Point I'm stuck at:
. . .Middle term = (10 + 2)/2 = 6
. . .\(\displaystyle T_6\, =\, {}^{10} C_5\, x^{10}\, \left(\dfrac{1}{2x}\right)^5\, =\, \dfrac{28}{27}\)
. . .\(\displaystyle T_6\, =\, {}^{10} C_5\, x^{10}\, \dfrac{1}{32x^5}\, =\, \dfrac{28}{27}\)
Attachments
Last edited by a moderator: