Without expanding the entire expression, find the coefficient on the [math]x^{12}y^5[/math] term for the binomial expansion of [math](2x-3y)^{17}[/math]
Normally I would create a tree and then simplify a long expression for these types of problems but this one says to do it without expanding.
So I'm assuming I would I do something like this?
[math]_{17}C_5(2x)^{12}(-3y)^5[/math]
[math]17! / 12! 5![/math]
[math]4096x^{12}(-243)y^5[/math]
[math]17 * 16 * 15* 14* 13[/math] / [math]5 * 4* 3* 2[/math]
[math]6188 * 4096 * -243 = -6,159,089,664x^{12}y^5[/math]
Is this still considered expanding?
Normally I would create a tree and then simplify a long expression for these types of problems but this one says to do it without expanding.
So I'm assuming I would I do something like this?
[math]_{17}C_5(2x)^{12}(-3y)^5[/math]
[math]17! / 12! 5![/math]
[math]4096x^{12}(-243)y^5[/math]
[math]17 * 16 * 15* 14* 13[/math] / [math]5 * 4* 3* 2[/math]
[math]6188 * 4096 * -243 = -6,159,089,664x^{12}y^5[/math]
Is this still considered expanding?