Binomial Coefficient Problem

currybeef

New member
Joined
Nov 18, 2019
Messages
2
IMAG1063.jpg IMAG1065.jpg I have done part (a) using differentiation. In part (b), I am stuck and don't know how to prove that the summation is equal to the required expression. Please help, thanks.
 
\(\displaystyle (1+x)^n = \sum \limits_{k=0}^n \dbinom{n}{k}x^k \\~\\

\left . \sum \limits_{k=0}^n \dbinom{n}{k} = (1+x)^n \right|_{x=1} = 2^n\\~\\

\text{differentiate}\\~\\

n(1+x)^{n-1} = \sum \limits_{k=1}^n k \dbinom{n}{k}x^{k-1} \\~\\

\left . \sum \limits_{k=1}^n k \dbinom{n}{k} = n(1+x)^{n-1} \right|_{x=1} = n2^{n-1} \\~\\

\text{The sum given in part (a) is}\\~\\

\sum \limits_{k=2}^n (k-1)\dbinom{n}{k} = \\~\\

\sum \limits_{k=2}^n k\dbinom{n}{k} - \sum \limits_{k=2}^n \dbinom{n}{k} = \\~\\

(n2^{n-1}-n) - (2^n - n - 1) = \\~\\

n2^{n-1}-2^n + 1 = \\~\\

(n-2)2^{n-1}+1

\)
 
Top