mooshupork34
Junior Member
- Joined
- Oct 29, 2006
- Messages
- 72
L of
(a b
c d)
=
(-10a - c + 2d, 5a + b - d, 2c + d, 9a + 17b + 2d)
Consider M_22 with the basis
\(\displaystyle \L \left{
\left(
\begin{array}{cc}
2 & 5 \\
2 & -1
\end{array}
\right)\,,\,
\left(
\begin{array}{cc}
-2 & -2 \\
0 & 1
\end{array}
\right)\,,\,
\left(
\begin{array}{cc}
-3 & -4 \\
1 & 2
\end{array}
\right)\,,\,
\left(
\begin{array}{cc}
-1 & -3 \\
0 & 1
\end{array}
\right)
\right}\)
and consider R^4 with the basis:
\(\displaystyle \L \left{(7,\, 0,\, -3,\, 1)\,,\, (2,\, -1,\, -2,\, 2)\,,\, (-2,\, 0,\, 1,\, 0)\,,\, (5,\, 17,\, 0,\, 0)\right}\).
Find the matrix which corresponds to the linear transformation L with respect to these two bases.
(a b
c d)
=
(-10a - c + 2d, 5a + b - d, 2c + d, 9a + 17b + 2d)
Consider M_22 with the basis
\(\displaystyle \L \left{
\left(
\begin{array}{cc}
2 & 5 \\
2 & -1
\end{array}
\right)\,,\,
\left(
\begin{array}{cc}
-2 & -2 \\
0 & 1
\end{array}
\right)\,,\,
\left(
\begin{array}{cc}
-3 & -4 \\
1 & 2
\end{array}
\right)\,,\,
\left(
\begin{array}{cc}
-1 & -3 \\
0 & 1
\end{array}
\right)
\right}\)
and consider R^4 with the basis:
\(\displaystyle \L \left{(7,\, 0,\, -3,\, 1)\,,\, (2,\, -1,\, -2,\, 2)\,,\, (-2,\, 0,\, 1,\, 0)\,,\, (5,\, 17,\, 0,\, 0)\right}\).
Find the matrix which corresponds to the linear transformation L with respect to these two bases.