baby matrix

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,520
Evaluate the determinant of the given matrix by (a)\displaystyle \bold{(a)} cofactor expansion and (b)\displaystyle \bold{(b)} using elementary row operations to introduce zeros into the matrix.

1. [4233]\displaystyle \bold{1.} \ \begin{bmatrix}-4 & 2 \\3 & 3 \end{bmatrix}

2. [7126]\displaystyle \bold{2.} \ \begin{bmatrix}7 & -1 \\-2 & -6 \end{bmatrix}
 
What is cofactor?

If we have a square matrix, say A=[aij]\displaystyle A = [a_{ij}], then Cij\displaystyle C_{ij} is the cofactor of the entry aij\displaystyle a_{ij}.

And Cij\displaystyle C_{ij} is defined as:

Cij=(1)i+jMij\displaystyle C_{ij} = (-1)^{i+j}M_{ij}, where Mij\displaystyle M_{ij} is the minor and it is equal to the determinant of (n1)×(n1)\displaystyle (n - 1) \times (n - 1) matrix by deleting the i\displaystyle ith row and j\displaystyle jth column of A\displaystyle A.

Confused? One example and you'll be the master of cofactor expansion😍

1. (a)\displaystyle \bold{1.} \rightarrow \ \bold{(a)}

We can work along the i\displaystyle ith row or along the j\displaystyle jth column. Let us make a decision. We will work along i\displaystyle ith row. We will choose to work along the first row, so

det A=4233=4C11+2C12\displaystyle \text{det} \ A = \left| \begin{matrix}-4 & 2 \\3 & 3\end{matrix} \right| = -4C_{11} + 2C_{12}

C11=(1)1+1M11=M11\displaystyle C_{11} = (-1)^{1+1}M_{11} = M_{11}

M11\displaystyle M_{11} \rightarrow means delete the first row and delete the first column and take the determinant of what left.

Then,

M11=3=3\displaystyle M_{11} = |3| = 3
C11=3\displaystyle C_{11} = 3

And

C12=(1)1+2M12=M12\displaystyle C_{12} = (-1)^{1+2}M_{12} = -M_{12}

M12\displaystyle M_{12} \rightarrow means delete the first row and delete the second column and take the determinant of what left.

Then,

M12=3=3\displaystyle M_{12} = |3| = 3
C12=3\displaystyle C_{12} = -3

Finally, we have:

det A=4C11+2C12=4(3)+2(3)=126=18\displaystyle \text{det} \ A = -4C_{11} + 2C_{12} = -4(3) + 2(-3) = -12 - 6 = -18

Easy ha?😉I told you!
 
Last edited:
2(a)\displaystyle \bold{2} \rightarrow \bold{(a)}

7126=7C11+(2)C21=7(1)2M112(1)3M21=76+21=422=44\displaystyle \left| \begin{matrix}7 & -1 \\-2 & -6\end{matrix} \right| = 7C_{11} + (-2)C_{21} = 7(-1)^2M_{11} - 2(-1)^{3}M_{21} = 7|-6| + 2|-1| = -42 - 2 = -44
 
1(b)\displaystyle \bold{1} \rightarrow \bold{(b)}

Let us start with the original matrix.

[4233]\displaystyle \begin{bmatrix}-4 & 2 \\3 & 3 \end{bmatrix}

R234R1+R2\displaystyle R_2 \rightarrow \frac{3}{4}R_1 + R_2

[4204.5]\displaystyle \begin{bmatrix}-4 & 2 \\0 & 4.5 \end{bmatrix}

We introduced a zero in the matrix. Now let us calculate the determinant.

4204.5=(4)(4.5)(0)(2)=18\displaystyle \left| \begin{matrix}-4 & 2 \\0 & 4.5\end{matrix} \right| = (-4)(4.5) - (0)(2) = -18
 
2(b)\displaystyle \bold{2} \rightarrow \bold{(b)}

Let us start with the original matrix.

[7126]\displaystyle \begin{bmatrix}7 & -1 \\-2 & -6 \end{bmatrix}

R172R2+R1\displaystyle R_1 \rightarrow \frac{7}{2}R_2 + R_1

[02226]\displaystyle \begin{bmatrix}0 & -22 \\-2 & -6 \end{bmatrix}

We introduced a zero in the matrix. Now let us calculate the determinant.

02226=(0)(6)(2)(22)=44\displaystyle \left| \begin{matrix}0 & -22 \\-2 & -6\end{matrix} \right| = (0)(-6) - (-2)(-22) = -44
 
Top