Average Cost

johnjones

New member
Joined
Sep 8, 2005
Messages
41
Can someone give me a hint for this question:

Given that C(10) = 120 and C'(10) =8, find d/dx[C(x)/x)] for x = 10.
Do I use the quotient rule? I don't know the function of C(x)? Thx.
 
Yup, that will give an equation in C(x),C'(x) and x and you know what they are. Just do
d(u/v)
then substitute u=C(x),v=x,du=C'(x),dv=dx,x=10
 
Hello, johnjones!

Given that C(10)=120\displaystyle C(10)\,=\,120 and C(10)=8,\displaystyle C'(10)\,=\,8,
find ddx[C(x)x]\displaystyle \frac{d}{dx}\left[\frac{C(x)}{x}\right] for x=10.\displaystyle x = 10.

Do I use the quotient rule? . . . . yes
I don't know the function of C(x). . . . . You don't need it
We have: .f(x)=C(x)x\displaystyle f(x)\:=\:\frac{C(x)}{x}

Quotient Rule: .f(x)  =  xC(x)1C(x)x2\displaystyle f'(x)\;=\;\frac{x\cdot C'(x)\,-\,1\cdot C(x)}{x^2}

When x=10:    f(10)  =  10C(10)C(10)102\displaystyle x=10:\;\;f'(10)\;=\;\frac{10\cdot C'(10)\,-\,C(10)}{10^2}

Since C(10)=20\displaystyle C(10)=20 and C(10)=8:    f(10)  =  10820102  =  60100  =  35\displaystyle C'(10) = 8:\;\;f'(10)\;=\;\frac{10\cdot8\,-\,20}{10^2}\;=\;\frac{60}{100}\;=\;\frac{3}{5}
 
Top