Find area that is common to r=1+sin θ and r=1
2∫1/2 (1+sin θ )^2 dθ + 2∫1/2 (1)^2 dθ
(interval 0,-pi/2), and (interval pi/2, 0) repectively
∫ (1+sin θ )^2 dθ + ∫ 1dθ
∫ 1+2sinθ+sinθ^2 dθ + ∫ 1dθ
∫ 1+2sinθ+∫((1-cos2θ)/2) dθ + ∫ 1dθ
θ+2cosθ + ∫1-cos u dθ + ∫ 1dθ (u=2θ)
θ+2cosθ + θ +sin 2θ| (0,-pi/2)+ θ | (pi/2, 0)
=pi
What am I doing wrong!
2∫1/2 (1+sin θ )^2 dθ + 2∫1/2 (1)^2 dθ
(interval 0,-pi/2), and (interval pi/2, 0) repectively
∫ (1+sin θ )^2 dθ + ∫ 1dθ
∫ 1+2sinθ+sinθ^2 dθ + ∫ 1dθ
∫ 1+2sinθ+∫((1-cos2θ)/2) dθ + ∫ 1dθ
θ+2cosθ + ∫1-cos u dθ + ∫ 1dθ (u=2θ)
θ+2cosθ + θ +sin 2θ| (0,-pi/2)+ θ | (pi/2, 0)
=pi
What am I doing wrong!