Idealistic
Junior Member
- Joined
- Sep 7, 2007
- Messages
- 97
a) Let A[sub:2o6jy2vq]n[/sub:2o6jy2vq] be the area of a polygon with n sides inscribed in a circle with a radius of r. By dividing the polygon iinto n congruent triangles with central angle 2pi/n , show that:
A[sub:2o6jy2vq]n[/sub:2o6jy2vq] = (1/2)nr[sup:2o6jy2vq]2[/sup:2o6jy2vq]sin(2pi/n)
b) Show that the lim[sub:2o6jy2vq]n -> inf[/sub:2o6jy2vq] A[sub:2o6jy2vq]n[/sub:2o6jy2vq] = pir[sup:2o6jy2vq]2[/sup:2o6jy2vq]
Am I suposed to divide the top equation by (1/2)r[sup:2o6jy2vq]2[/sup:2o6jy2vq](2pi/n), the area of a sector? Im not really sure what to do in part b as n approaches infinity
.
A[sub:2o6jy2vq]n[/sub:2o6jy2vq] = (1/2)nr[sup:2o6jy2vq]2[/sup:2o6jy2vq]sin(2pi/n)
b) Show that the lim[sub:2o6jy2vq]n -> inf[/sub:2o6jy2vq] A[sub:2o6jy2vq]n[/sub:2o6jy2vq] = pir[sup:2o6jy2vq]2[/sup:2o6jy2vq]
Am I suposed to divide the top equation by (1/2)r[sup:2o6jy2vq]2[/sup:2o6jy2vq](2pi/n), the area of a sector? Im not really sure what to do in part b as n approaches infinity
.