I solved a infinite power series which is convergent, but Wolfram Alpha is concluding its divergent through many tests (geometric test, limit test, etc..).
So, are those tests not for all power series? Or are they flawed?
And this series is no exception, I can give infinite amount of similar series if you want!
Anyways, here the series.
[math]S=\sum_{k=0}^{∞}{\frac{{(-4)}^{k}}{{3}^{k+1}}} \\ S= \frac{1}{3}-\frac{{4}}{{3}^{2}}+\frac{{4}^{2}}{{3}^{3}}-\frac{{4}^{3}}{{3}^{4}}+... [eq(1)]\\ 3S= 1-\frac{{4}}{{3}^{}}+\frac{{4}^{2}}{{3}^{2}}-\frac{{4}^{3}}{{3}^{3}}+...\\ 1-3S=\frac{{4}}{{3}^{}}-\frac{{4}^{2}}{{3}^{2}}+\frac{{4}^{3}}{{3}^{3}}-...\\ \frac{1-3S}{4}=\frac{{1}}{{3}^{}}-\frac{{4}^{}}{{3}^{2}}+\frac{{4}^{2}}{{3}^{3}}-...[eq(2)]\\ \\ eq(1)-eq(2)\\ \Rightarrow S-\frac{1-3S}{4}=0\\ 4S-1+3S =0\\ 7S=1\\ S=1/7\\ ∴ the\ series\ is\ convergent[/math]Here's a screenshot of Wolfram Aplha
Note: An amateur here so pls try to keep it simple
So, are those tests not for all power series? Or are they flawed?
And this series is no exception, I can give infinite amount of similar series if you want!
Anyways, here the series.
[math]S=\sum_{k=0}^{∞}{\frac{{(-4)}^{k}}{{3}^{k+1}}} \\ S= \frac{1}{3}-\frac{{4}}{{3}^{2}}+\frac{{4}^{2}}{{3}^{3}}-\frac{{4}^{3}}{{3}^{4}}+... [eq(1)]\\ 3S= 1-\frac{{4}}{{3}^{}}+\frac{{4}^{2}}{{3}^{2}}-\frac{{4}^{3}}{{3}^{3}}+...\\ 1-3S=\frac{{4}}{{3}^{}}-\frac{{4}^{2}}{{3}^{2}}+\frac{{4}^{3}}{{3}^{3}}-...\\ \frac{1-3S}{4}=\frac{{1}}{{3}^{}}-\frac{{4}^{}}{{3}^{2}}+\frac{{4}^{2}}{{3}^{3}}-...[eq(2)]\\ \\ eq(1)-eq(2)\\ \Rightarrow S-\frac{1-3S}{4}=0\\ 4S-1+3S =0\\ 7S=1\\ S=1/7\\ ∴ the\ series\ is\ convergent[/math]Here's a screenshot of Wolfram Aplha
Note: An amateur here so pls try to keep it simple