arc length x=9-sqrt(-y^2+2y+8) from y=1 to y=4

stars2099

New member
Joined
Apr 1, 2009
Messages
4
Hey guys, I'm stuck on this problem:

Find the arc length x=9-sqrt(-y^2+2y+8) from y=1 to y=4

I'm stuck on how to approach this. I found the derivative but then I didn't know where to go from there. I tried PFD but I didn't know how to solve it.
Any help would be appreciated. Thanks.
 
You should be evaluating the integral of 3y2+2y+8\displaystyle \frac{3}{\sqrt{-y^2+2y+8}}.
 
how'd you get to that integral? after finding X', did you find a common denominator and add?
 
Hello, stars2099!

Looks like you need some baby-step algebra . . .


Find the arc length: x=98+2yy2 from y=1 to y=4\displaystyle \text{Find the arc length: }\,x\:=\:9-\sqrt{8+2y-y^2}\:\text{ from }y=1\text{ to }y=4

Formula:   L  =  ab1+(dxdy)2dy\displaystyle \text{Formula: }\;L \;=\;\int^b_a\sqrt{1 + \left(\frac{dx}{dy}\right)^2}\,dy

We have: x  =  9(8+2yy2)12\displaystyle \text{We have: }\:x \;=\;9 - \left(8+2y-y^2\right)^{\frac{1}{2}}

. . Then: dxdy  =  12(8+2yy2)-12(22y)  =  1y8+2yy2\displaystyle \text{Then: }\:\frac{dx}{dy}\;=\;\tfrac{1}{2}\left(8+2y-y^2\right)^{\text{-}\frac{1}{2}}(2-2y) \;=\;\frac{1-y}{\sqrt{8+2y-y^2}}

. . (dxdy)2  =  (1y8+2yy2)2  =  (1y)28+2yy2\displaystyle \left(\frac{dx}{dy}\right)^2 \;=\;\left(\frac{1-y}{\sqrt{8+2y-y^2}}\right)^2 \;=\;\frac{(1-y)^2}{8+2y-y^2}

. . 1+(dxdy)2  =  1+(1y)28+2yy2  =  8+2yy28+2yy2+12y+y28+2yy2  =  98+2yy2\displaystyle 1 + \left(\frac{dx}{dy}\right)^2 \;=\;1 + \frac{(1-y)^2}{8+2y-y^2} \;=\; \frac{8+2y-y^2}{8+2y-y^2} + \frac{1-2y + y^2}{8+2y-y^2} \;=\;\frac{9}{8+2y-y^2}


Therefore:   1+(dxdy)2  =  98+2yy2  =  98+2yy2  =  38+2yy2\displaystyle \text{Therefore: }\;\sqrt{1 + \left(\frac{dx}{dy}\right)^2} \;=\;\sqrt{\frac{9}{8+2y-y^2}} \;=\;\frac{\sqrt{9}}{\sqrt{8+2y-y^2}} \;=\;\frac{3}{\sqrt{8+2y-y^2}}

Got it?

 
Top