APPROXIMATE THE INTEGRAL

Ryan Rigdon

Junior Member
Joined
Jun 10, 2010
Messages
246
I have this problem that is driving me up the wall. Every time i do it i get it wrong. the only thing i get write on it is the fact that n = 16

its the second part of the problem that i get wrong. is approximating the integral. i have followed examples and nothing. i get the answer of 1.253 and we were to round off to the 3rd decimal place. am i missing something. Why do i keep getting it wrong.
 

Attachments

  • lastscan.jpg
    lastscan.jpg
    102.5 KB · Views: 82
161xdx =˙ 1.79175946923 (TI89)\displaystyle \int_{1}^{6}\frac{1}{x}dx \ \dot= \ 1.79175946923 \ (TI-89)

Now, using Simpsons Rule with n = 16, we get;\displaystyle Now, \ using \ Simpson's \ Rule \ with \ n \ = \ 16, \ we \ get;

161xdx = 548[1+64/21+32/26+64/31+32/36+64/41+32/46+64/51+32/56+64/61\displaystyle \int_{1}^{6}\frac{1}{x}dx \ = \ \frac{5}{48}[1+64/21+32/26+64/31+32/36+64/41+32/46+64/51+32/56+64/61

+32/66+64/71+32/76+64/81+32/86+64/91+16/96] =˙ 1.7920230584\displaystyle +32/66+64/71+32/76+64/81+32/86+64/91+16/96] \ \dot= \ 1.7920230584

Ergo, 1.78  161xdx  1.80\displaystyle Ergo, \ 1.78 \ \le \ \int_{1}^{6}\frac{1}{x}dx \ \le \ 1.80

A fixed n for Simpsons Rule usually gives a more accurate approximation than the\displaystyle A \ fixed \ n \ for \ Simpson's \ Rule \ usually \ gives \ a \ more \ accurate \ approximation \ than \ the

Trapezoid Rule, however the main reason we used the Trapezoid rule instead of the\displaystyle Trapezoid \ Rule, \ however \ the \ main \ reason \ we \ used \ the \ Trapezoid \ rule \ instead \ of \ the

Simpson Rule is its error can more easily be estimated.\displaystyle Simpson \ Rule \ is \ its \ error \ can \ more \ easily \ be \ estimated.

For instance, if f(x) = xsin(x+1), then to estimate the error in Simpsons Rule\displaystyle For \ instance, \ if \ f(x) \ = \ \sqrt{xsin(x+1)}, \ then \ to \ estimate \ the \ error \ in \ Simpson's \ Rule

we would need to find the fourth derivative of f  a huge task!\displaystyle we \ would \ need \ to \ find \ the \ fourth \ derivative \ of \ f \ - \ a \ huge \ task!
 
Top