applications to geometry

thatguy47

Junior Member
Joined
Aug 11, 2008
Messages
69
Consider the region bounded by y = ex, the x-axis, the y-axis, and the line x = 3. A solid is created so that the given region is its base and cross-sections perpendicular to the x-axis are semi-circles. Set up a Riemann sum and then a definite integral to find the volume of the solid.


a) What is the volume of a slice perpendicular to the x-axis? (Use Deltax for x as necessary.)

b) What is the exact volume of the solid?

for a) i said (pi)(e^(2x))Deltax which is wrong

for b) i said [integral from 0 to 3] of (pi)(e^(2x))dx which is also wrong

how do i solve this?
 
thatguy47 said:
for a) i said (pi)(e^(2x))Deltax which is wrong

I think that e^x is the diameter, so e^x/2 is the radius.

Also, don't forget to cut each cylinder in half. In other words, if each slice is a full circle (half on one side of the xy-plane and half on the other side), then the volume of each cylindrical slice is twice what we want because we're only interested in the half of the solid that's on one side of the xy-plane.

I can try to draw a sketch, if you need more help visualizing this object.

 
thatguy47 said:
are you saying a would be: (pi)(e^(x/2))DeltaX ??

No. I'm saying that the radius is e^x/2.

I'm thinking that each slice's volume is half a cylinder:

12π(ex2)2Δx\displaystyle \frac{1}{2} \cdot \pi \cdot \left( \frac{e^x}{2} \right)^2 \cdot \Delta x

(I'm scanning a sloppy sketch.)
 
?
Double-click image, to expand.

[attachment=0:15b05i96]FunkySolid.JPG[/attachment:15b05i96]
 

Attachments

  • FunkySolid.JPG
    FunkySolid.JPG
    14 KB · Views: 284
Thanks to the graciousness of mmm4444bot.s graph, we have:\displaystyle Thanks \ to \ the \ graciousness \ of \ mmm4444bot.'s \ graph, \ we \ have:

a) Area (not volume) of a slice = A = πe2x8 sq. units and (b), the volume\displaystyle a) \ Area \ (not \ volume) \ of \ a \ slice \ = \ A \ = \ \frac{\pi e^{2x}}{8} \ sq. \ units \ and \ (b), \ the \ volume

of the solid = V = π803e2xdx = π16(e61) =˙ 79.017 cu. units\displaystyle of \ the \ solid \ = \ V \ = \ \frac{\pi}{8}\int_{0}^{3}e^{2x}dx \ = \ \frac{\pi}{16}(e^{6}-1) \ \dot= \ 79.017 \ cu. \ units

Note: Asemicircle = πr22, d = ex, r = ex2\displaystyle Note: \ A_{semicircle} \ = \ \frac{\pi r^{2}}{2}, \ d \ = \ e^{x}, \ r \ = \ \frac{e^{x}}{2}
 
PostScript:\displaystyle Post Script:

V = π803e2xdx, Δx = ban = 30n = 3n, ci = 0+3in, Right Endpoint\displaystyle V \ = \ \frac{\pi}{8}\int_{0}^{3}e^{2x}dx, \ \Delta x \ = \ \frac{b-a}{n} \ = \ \frac{3-0}{n} \ = \ \frac{3}{n}, \ c_i \ = \ 0+\frac{3i}{n}, \ Right \ Endpoint

Hence, V = limΔ0i=1nf(ci)Δxi = limnπ8i=1ne6i/n(3n) = (e61)π16 =˙ 79.017\displaystyle Hence, \ V \ = \ \lim_{||\Delta||\to0}\sum_{i=1}^{n}f(c_i)\Delta x_i \ = \ \lim_{n\to\infty}\frac{\pi}{8}\sum_{i=1}^{n} e^{6i/n}\bigg(\frac{3}{n}\bigg) \ = \ \frac{(e^{6}-1)\pi}{16} \ \dot= \ 79.017

Here we show both, the definite integral and its Riemann sum.\displaystyle Here \ we \ show \ both, \ the \ definite \ integral \ and \ its \ Riemann \ sum.
 
Top