Let f be the function defined by f(x)= 2xe^2x
A. Find lim x-> -? f(x) and lim x-> ? f(x)
B. Find the absolute minimum value of f.
This is what I did
f(x) = 2x/(e^(-x))
f(x) = 2x*(e^x)
f'(x) = 2xe^x + e^x*2
f'(x) = 2xe^x + 2e^x
f''(x) = 2xe^x + 2e^x + 2e^x
f''(x) = 2xe^x + 4e^x
Solve for the roots of f'':
0 = 2xe^x + 4e^x
-4e^x = 2xe^x
-4 = 2x
-2 = x
A. Find lim x-> -? f(x) and lim x-> ? f(x)
B. Find the absolute minimum value of f.
This is what I did
f(x) = 2x/(e^(-x))
f(x) = 2x*(e^x)
f'(x) = 2xe^x + e^x*2
f'(x) = 2xe^x + 2e^x
f''(x) = 2xe^x + 2e^x + 2e^x
f''(x) = 2xe^x + 4e^x
Solve for the roots of f'':
0 = 2xe^x + 4e^x
-4e^x = 2xe^x
-4 = 2x
-2 = x