ap calc deriv review

xtrmk

New member
Joined
Aug 30, 2006
Messages
22
If y = asin(ct) + bcos(ct), where a, b, c are constants, then y'' = ?

How do I start this problem?

If y = sqrt(x^2+16) what is y''?

I got y ' to equal (1/2)(x^2+16)^(-1/2) (2x)
after get it down to x/sqrt(x^2+16) , I tried using the quotient and product rule but cannot get a definite answer.

If H(x) = sqrt[(F(x)], then H'(3) = ?
Can someone help me to set up H because i have the given f, f', g , and g' on a chart.

thank you for any help.
 
all of these are just chain rule problems ...

y = a*sin(ct) + b*cos(ct)

y' = ac*cos(ct) - bc*sin(ct)

y" = -ac<sup>2</sup>*sin(ct) - bc<sup>2</sup>*cos(ct)


y = (x<sup>2</sup> + 16)<sup>1/2</sup>

y' = (1/2)(x<sup>2</sup> + 16)<sup>-1/2</sup>(2x)

y' = x(x<sup>2</sup> + 16)<sup>-1/2</sup>

y" = x[(-1/2)(x<sup>2</sup> + 16)<sup>-3/2</sup>(2x)] + (x<sup>2</sup> + 16)<sup>-1/2</sup>

y" = -x<sup>2</sup>(x<sup>2</sup> + 16)<sup>-3/2</sup> + (x<sup>2</sup> + 16)<sup>-1/2</sup>

y" = (x<sup>2</sup> + 16)<sup>-3/2</sup>[-x<sup>2</sup> + (x<sup>2</sup> + 16)]

y" = 16(x<sup>2</sup> + 16)<sup>-3/2</sup> = 16/(x<sup>2</sup> + 16)<sup>3/2</sup>


h(x) = [f(x)]<sup>1/2</sup>

h'(x) = (1/2)[f(x)]<sup>-1/2</sup>f'(x) = f'(x)/(2[f(x)]<sup>1/2</sup>)
 
Top