\(\displaystyle \int\bigg(\frac{8}{x^{4}}+\frac{4}{15x}\bigg) \ dx \ = \ 8 \int x^{-4} \ dx+\frac{4}{15} \int x^{-1} \ dx\)
\(\displaystyle = \ -\frac{8}{3}x^{-3}+\frac{4}{15}ln|x|+C\)
\(\displaystyle Note: \ 4/15x \ = \ \frac{4x}{15}; \ 4/(15x) \ = \ \frac{4}{15x}, \ I'm \ assuming \ you \ wanted \ the \ latter.\)
\(\displaystyle Whether \ for \ emphasis \ or \ needed, \ a \ common \ courtesy \ is \ to \ use \ grouping \ symbols \ to \ avoid \ any\)
\(\displaystyle \ ambiguity.\)