Antiderivative issue

dear2009

New member
Joined
Oct 8, 2009
Messages
33
Hello math help participants,


I am doing an antiderivative problem but I am having trouble finding how to do the derivative of this problem


14/(square root of 2)(cos^2)(7x)

Can anybody please show me the derivative of this part becuase I dont know how to start it.

Thanks in advance
 
dear2009 said:
Hello math help participants,


I am doing an antiderivative problem but I am having trouble finding how to do the derivative of this problem


14/(square root of 2)(cos^2)(7x)

Can anybody please show me the derivative of this part becuase I dont know how to start it.

Thanks in advance

ddx(142cos2(x))\displaystyle \frac{d}{dx}\left (\frac{14}{\sqrt{2}}cos^2(x)\right )

=1422cos(x)(sin(x))\displaystyle = \frac{14}{\sqrt{2}}\cdot 2\cdot cos(x)\cdot \left (-sin(x)\right )

Thats it ......
 
Assuming this is what you want to integrate:\displaystyle Assuming \ this \ is \ what \ you \ want \ to \ integrate:

142cos2(7x)dx = 72cos2(7x)dx\displaystyle \int\frac{14}{\sqrt2}cos^{2}(7x)dx \ = \ 7\sqrt2\int cos^{2}(7x)dx

Let u = 7x, then du = 7dx, du7 = dx.\displaystyle Let \ u \ = \ 7x, \ then \ du \ = \ 7dx, \ \frac{du}{7} \ = \ dx.

Ergo, we have 2cos2(u)du = 21+cos(2u)2du\displaystyle Ergo, \ we \ have \ \sqrt2 \int cos^{2}(u)du \ = \ \sqrt2 \int\frac{1+cos(2u)}{2}du

= 22[1+cos(2u)]du = 22[u+sin(2u)2]+C\displaystyle = \ \frac{\sqrt2}{2}\int[1+cos(2u)]du \ = \ \frac{\sqrt2}{2}\bigg[u+\frac{sin(2u)}{2}\bigg]+C

= 22[u+sin(u)cos(u)]+C, resubstituting we get: 22[7x+sin(7x)cos(7x)]+C.\displaystyle = \ \frac{\sqrt2}{2}[u+sin(u)cos(u)]+C, \ resubstituting \ we \ get: \ \frac{\sqrt2}{2}[7x+sin(7x)cos(7x)]+C.

Therefore, putting it all together, we get: 142cos2(7x)dx = 22[7x+sin(7x)cos(7x)]+C\displaystyle Therefore, \ putting \ it \ all \ together, \ we \ get: \ \int\frac{14}{\sqrt2}cos^{2}(7x)dx \ = \ \frac{\sqrt2}{2}[7x+sin(7x)cos(7x)]+C
 
Top