hi there, can you find the antiderevative of: square root of (1+cosx), thank you :lol:
F ferhaouim3 New member Joined Sep 20, 2005 Messages 3 Nov 27, 2005 #1 hi there, can you find the antiderevative of: square root of (1+cosx), thank you :lol:
O opticaltempest New member Joined Nov 19, 2005 Messages 48 Nov 27, 2005 #2 We want to find the derivative of \(\displaystyle \sqrt {1 + \cos \left( x \right)} \\) It helps to rewrite the our original expression as, \(\displaystyle \left( {1 + \cos (x)} \right)^{\frac{1}{2}} \\) Do you see how you can apply the general power rule? EDIT: It was late... I read it as derivative... Sorry [/b]
We want to find the derivative of \(\displaystyle \sqrt {1 + \cos \left( x \right)} \\) It helps to rewrite the our original expression as, \(\displaystyle \left( {1 + \cos (x)} \right)^{\frac{1}{2}} \\) Do you see how you can apply the general power rule? EDIT: It was late... I read it as derivative... Sorry [/b]
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Nov 27, 2005 #3 Hello, ferhaouim3! Pay no attention to the man behind the curtain . . . We have: . \(\displaystyle \L\int \sqrt{1\,+\,\cos(x)}\,dx\) Recall the identity: .cos2(x2) = 1 + cos(x)2 ⇒ 1 + cos(x) = 2⋅cos2(x2)\displaystyle cos^2\left(\frac{x}{2}\right) \:= \:\frac{1\,+\,\cos(x)}{2}\;\;\Rightarrow\;\;1\,+\,\cos(x)\:=\:2\cdot\cos^2\left(\frac{x}{2}\right)cos2(2x)=21+cos(x)⇒1+cos(x)=2⋅cos2(2x) . . Hence: .1 + cos(x) = 2⋅cos(x2)\displaystyle \sqrt{1\,+\,\cos(x)} \:=\:\sqrt{2}\cdot\cos\left(\frac{x}{2}\right)1+cos(x)=2⋅cos(2x) The integral becomes: .\(\displaystyle \L\sqrt{2}\int\cos\left(\frac{x}{2}\right)\,dx\) . . . got it?
Hello, ferhaouim3! Pay no attention to the man behind the curtain . . . We have: . \(\displaystyle \L\int \sqrt{1\,+\,\cos(x)}\,dx\) Recall the identity: .cos2(x2) = 1 + cos(x)2 ⇒ 1 + cos(x) = 2⋅cos2(x2)\displaystyle cos^2\left(\frac{x}{2}\right) \:= \:\frac{1\,+\,\cos(x)}{2}\;\;\Rightarrow\;\;1\,+\,\cos(x)\:=\:2\cdot\cos^2\left(\frac{x}{2}\right)cos2(2x)=21+cos(x)⇒1+cos(x)=2⋅cos2(2x) . . Hence: .1 + cos(x) = 2⋅cos(x2)\displaystyle \sqrt{1\,+\,\cos(x)} \:=\:\sqrt{2}\cdot\cos\left(\frac{x}{2}\right)1+cos(x)=2⋅cos(2x) The integral becomes: .\(\displaystyle \L\sqrt{2}\int\cos\left(\frac{x}{2}\right)\,dx\) . . . got it?