Hello, ferhaouim3!
Pay no attention to the man behind the curtain . . .
We have: . \(\displaystyle \L\int \sqrt{1\,+\,\cos(x)}\,dx\)
Recall the identity: .\(\displaystyle cos^2\left(\frac{x}{2}\right) \:= \:\frac{1\,+\,\cos(x)}{2}\;\;\Rightarrow\;\;1\,+\,\cos(x)\:=\:2\cdot\cos^2\left(\frac{x}{2}\right)\)
. . Hence: .\(\displaystyle \sqrt{1\,+\,\cos(x)} \:=\:\sqrt{2}\cdot\cos\left(\frac{x}{2}\right)\)
The integral becomes: .\(\displaystyle \L\sqrt{2}\int\cos\left(\frac{x}{2}\right)\,dx\) . . . got it?