\(\displaystyle galactus, \ this \ is \ how \ I \ approach \ this \ problem. \ As \ always \ I \ am \ open \ to \ constructive\)
\(\displaystyle criticism \ from \ whom \ ever; \ basically \ is \ there \ another, \ easier \ way?\)
\(\displaystyle Note: \ My \ way \ is \ the \ same \ as \ yours, \ except \ for \ minor \ differences, \ to \ wit:\)
\(\displaystyle f(x) \ = \ x^{-3/5}, \ find \ the \ derivative \ using \ first \ principle.\)
\(\displaystyle f'(x) \ = \ \lim_{h\to0} \ \frac{(x+h)^{-3/5}-x^{-3/5}}{h} \ which \ gives \ \lim_{h\to0} \ \frac{x^{3/5}-(x+h)^{3/5}}{hx^{3/5}(x+h)^{3/5}}\)
\(\displaystyle Now \ (a-b) \ = \ (a^{1/5}-b^{1/5})(a^{4/5}+a^{1/5}b^{3/5}+a^{2/5}b^{2/5}+a^{3/5}b^{1/5}+b^{4/5})\)
\(\displaystyle This \ implies \ that \ (a^{1/5}-b^{1/5}) \ = \ \frac{(a-b)}{(a^{4/5}+a^{1/5}b^{3/5}+a^{2/5}b^{2/5}+a^{3/5}b^{1/5}+b^{4/5})}\)
\(\displaystyle Ergo \ let \ a^{1/5} \ = \ x^{3/5} \ and \ b^{1/5} \ = \ (x+h)^{3/5}\)
\(\displaystyle By \ substitution, \ we \ have \ - \ \lim_{h\to0} \ \frac{a^{1/5}-b^{1/5}}{ha^{1/5}b^{1/5}}\)
\(\displaystyle Substituting \ again \ gives \ - \ \lim_{h\to0} \ \frac{a-b}{h[a^{1/5}b^{1/5}][a^{4/5}+a^{1/5}b^{3/5}+a^{2/5}b^{2/5}+a^{3/5}b^{1/5}+b^{4/5}]}\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-(x+h)^{3}}{h[x^{3/5}(x+h)^{3/5}][x^{12/5}+x^{3/5}(x+h)^{9/5}+x^{6/5}(x+h)^{6/5}+x^{9/5}(x+h)^{3/5}+(x+h)^{12/5}]}\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{x^{3}-x^{3}-3x^{2}h-3xh^{2}-h^{3}}{h[x^{3/5}(x+h)^{3/5}][x^{12/5}+x^{3/5}(x+h)^{9/5}+x^{6/5}(x+h)^{6/5}+x^{9/5}(x+h)^{3/5}+(x+h)^{12/5}]}\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}-3xh-h^{2}}{[x^{3/5}(x+h)^{3/5}][x^{12/5}+x^{3/5}(x+h)^{9/5}+x^{6/5}(x+h)^{6/5}+x^{9/5}(x+h)^{3/5}+(x+h)^{12/5}]}\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}}{(x^{3/5})(x^{3/5})[x^{12/5}+(x^{3/5})(x^{9/5})+(x^{6/5})(x^{6/5})+(x^{9/5})(x^{3/5})+x^{12/5}]}\)
\(\displaystyle = \ \lim_{h\to0} \ \frac{-3x^{2}}{x^{6/5}[x^{12/5}+x^{12/5}+x^{12/5}+x^{12/5}+x^{12/5}]} \ = \ \lim_{h\to0} \ \frac{-3x^{2}}{x^{6/5}(5x^{12/5})} \ = \ \lim_{h\to0} \ \frac{-3x^{2}}{5x^{18/5}} \ = \ \frac{-3}{5x^{8/5}}\)
\(\displaystyle Done, \ gasp.\)