Another inequality

brianlee7799

New member
Joined
Jul 17, 2010
Messages
4
If a1,a2, a3 are positive, prove that 1/3(a1+a2+a3) >= cuberoot(a1*a2*a3).
This one I'm completely clueless. Please help. Thanks!!
 
Seems like a logarithm transformation would be helpful.
 
brianlee7799 said:
If a1,a2, a3 are positive, prove that 1/3(a1+a2+a3) >= cuberoot(a1*a2*a3).
This one I'm completely clueless. Please help. Thanks!!

\(\displaystyle \frac{a_1+a_2+a_3}{3}\ \ge\ \sqrt[3]{a_1a_2a_3}\ ?\)

Let's take it that the numbers are arranged in decreasing order,
if they are not, let's do it and relabel the values so that...

\(\displaystyle a_1\ \ge\ a_2\ \ge\ a_3\)

Also, let's relabel the values as follows

\(\displaystyle A_1=\sqrt[3]{a_1},\ A_2=\sqrt[3]{a_2},\ A_3=\sqrt[3]{a_3}\)

Then..
\(\displaystyle a_1+a_2+a_3\ \ge\ 3\left(a_1a_2a_3\right)^{\frac{1}{3}}\ ?\)

\(\displaystyle a_1+a_2+a_3\ \ge\ 3\left(a_1\right)^{\frac{1}{3}}\left(a_2\right)^{\frac{1}{3}}\left(a_3\right)^{\frac{1}{3}}\ ?\)

\(\displaystyle \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\ \ge\ 3A_1A_2A_3\ ?\)


Now here's a little trick, which explains why the numbers ought to be in decreasing order.

\(\displaystyle a\ \ge\ b\)
\(\displaystyle c\ \ge\ d\)
\(\displaystyle a-b\ \ge\ 0\)
\(\displaystyle c-d\ \ge\ 0\)
\(\displaystyle (a-b)(c-d)\ \ge\ 0\)
\(\displaystyle ac-ad-bc+bd\ \ge\ 0\)
\(\displaystyle ac+bd\ \ge\ ad+bc\)

Notice that we begin with
\(\displaystyle ac+bd=ac+bd\)
and move to
\(\displaystyle ac+bd\ \ge\ ad+bc\)

Hence, if we swop the smaller d with the larger c, we go from an equality to an inequality.
We can do the same thing in the problem given.

\(\displaystyle \left(A_1\right)^2A_1+\left(A_2\right)^2A_2+\left(A_3\right)^2A_3=\left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

Now swop the smaller \(\displaystyle A_3\) with the larger \(\displaystyle A_1\) to form the inequality

\(\displaystyle \left(A_1\right)^2A_3+\left(A_2\right)^2A_2+\left(A_3\right)^2A_1\ \le\ \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

Swop an \(\displaystyle A_2\) from the centre with an \(\displaystyle A_3\) from the third

\(\displaystyle \left(A_1\right)^2A_3+\left(A_2\right)^2A_3+A_3A_2A_1\ \le\ \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

Swop an \(\displaystyle A_1\) from the first with an \(\displaystyle A_2\) from the centre

\(\displaystyle A_1A_2A_3+A_1A_2A_3+A_1A_2A_3\ \le\ \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

If you rewrite in the original form, we have

\(\displaystyle 3\sqrt[3]{a_1a_2a_3}\ \le\ a_1+a_2+a_3\)
 
To shorten Chris' proof:

a[sup:2365mfhi]3[/sup:2365mfhi] + b[sup:2365mfhi]3[/sup:2365mfhi] + c[sup:2365mfhi]3[/sup:2365mfhi] - 3abc = (a+b+c) (a[sup:2365mfhi]2[/sup:2365mfhi] + b[sup:2365mfhi]2[/sup:2365mfhi] + c[sup:2365mfhi]2[/sup:2365mfhi] - ab -bc - ca) = (a + b + c)[(a-b)[sup:2365mfhi]2[/sup:2365mfhi] + (b-c)[sup:2365mfhi]2[/sup:2365mfhi] + (c-a)[sup:2365mfhi]2[/sup:2365mfhi]]/2 ? 0 (for a, b & c ? 0)

a[sup:2365mfhi]3[/sup:2365mfhi] + b[sup:2365mfhi]3[/sup:2365mfhi] + c[sup:2365mfhi]3[/sup:2365mfhi] ? 3abc
 
\(\displaystyle Let \ b \ and \ c \ be \ positive \ real \ numbers. \ Then \ 1 \ and \ only \ 1 \ of \ 3 \ possibilities \ exist,\)

\(\displaystyle either \ b \ > \ c, \ b \ = \ c, \ or \ b \ < \ c, \ no \ other \ possibilities \ exist.\)

\(\displaystyle In \ other \ words, \ if \ b \ is \ not \ less \ than \ c, \ then \ b \ either \ = \ c \ or \ is \ > \ than \ c.\)

\(\displaystyle Now \ let \ b \ = \ \frac{a_1+a_2+a_3}{3} \ and \ let \ c \ = \ [a_1a_2a_3]^{1/3}, \ a_1, \ a_2, \ and \ a_3, \ are\)

\(\displaystyle all \ positive, \ (given).\)

\(\displaystyle We \ wish \ to \ prove \ that \ b \ \ge \ c \ \implies \ \frac{a_1+a_2+a_3}{3} \ \ge \ [a_1a_2a_3]^{1/3}.\)

\(\displaystyle Proof \ by \ Contradiction, \ to \ wit;\)

\(\displaystyle Suppose \ not. \ Suppose \ b \ \le \ c \ \implies \ that \ \frac{a_1+a_2+a_3}{3} \ \le \ [a_1a_2a_3]^{1/3}.\)

\(\displaystyle Now \ let \ a_1 \ =1, \ a_2 \ = \ 2, \ and \ a_3 \ =4, \ which \ gives \ \frac{7}{3} \ \le \ 2, \ a \ contradiction.\)

\(\displaystyle Hence, \ the \ supposition \ is \ false \ and \ the \ original \ inequality \ is \ true, \ QED.\)
 
chrisr said:
brianlee7799 said:
If a1,a2, a3 are positive, prove that 1/3(a1+a2+a3) >= cuberoot(a1*a2*a3).
This one I'm completely clueless. Please help. Thanks!!

\(\displaystyle \frac{a_1+a_2+a_3}{3}\ \ge\ \sqrt[3]{a_1a_2a_3}\ ?\)

Let's take it that the numbers are arranged in decreasing order,
if they are not, let's do it and relabel the values so that...

\(\displaystyle a_1\ \ge\ a_2\ \ge\ a_3\)

Also, let's relabel the values as follows

\(\displaystyle A_1=\sqrt[3]{a_1},\ A_2=\sqrt[3]{a_2},\ A_3=\sqrt[3]{a_3}\)

Then..
\(\displaystyle a_1+a_2+a_3\ \ge\ 3\left(a_1a_2a_3\right)^{\frac{1}{3}}\ ?\)

\(\displaystyle a_1+a_2+a_3\ \ge\ 3\left(a_1\right)^{\frac{1}{3}}\left(a_2\right)^{\frac{1}{3}}\left(a_3\right)^{\frac{1}{3}}\ ?\)

\(\displaystyle \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\ \ge\ 3A_1A_2A_3\ ?\)


Now here's a little trick, which explains why the numbers ought to be in decreasing order.

\(\displaystyle a\ \ge\ b\)
\(\displaystyle c\ \ge\ d\)
\(\displaystyle a-b\ \ge\ 0\)
\(\displaystyle c-d\ \ge\ 0\)
\(\displaystyle (a-b)(c-d)\ \ge\ 0\)
\(\displaystyle ac-ad-bc+bd\ \ge\ 0\)
\(\displaystyle ac+bd\ \ge\ ad+bc\)

Notice that we begin with
\(\displaystyle ac+bd=ac+bd\)
and move to
\(\displaystyle ac+bd\ \ge\ ad+bc\)

Hence, if we swop the smaller d with the larger c, we go from an equality to an inequality.
We can do the same thing in the problem given.

\(\displaystyle \left(A_1\right)^2A_1+\left(A_2\right)^2A_2+\left(A_3\right)^2A_3=\left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

Now swop the smaller \(\displaystyle A_3\) with the larger \(\displaystyle A_1\) to form the inequality

\(\displaystyle \left(A_1\right)^2A_3+\left(A_2\right)^2A_2+\left(A_3\right)^2A_1\ \le\ \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

Swop an \(\displaystyle A_2\) from the centre with an \(\displaystyle A_3\) from the third

\(\displaystyle \left(A_1\right)^2A_3+\left(A_2\right)^2A_3+A_3A_2A_1\ \le\ \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

Swop an \(\displaystyle A_1\) from the first with an \(\displaystyle A_2\) from the centre

\(\displaystyle A_1A_2A_3+A_1A_2A_3+A_1A_2A_3\ \le\ \left(A_1\right)^3+\left(A_2\right)^3+\left(A_3\right)^3\)

If you rewrite in the original form, we have

\(\displaystyle 3\sqrt[3]{a_1a_2a_3}\ \le\ a_1+a_2+a_3\)

Using this method, the proof is extendenable to the 4th, 5th, 6th, 7th....... roots, not just the cube root.
 
Top