shakalandro
New member
- Joined
- Nov 29, 2008
- Messages
- 36
Let u[sub:21min9po]n[/sub:21min9po] be the nth fibonacci number. Prove, by induction on n (without using the Binet formula) that
u[sub:21min9po]m+n[/sub:21min9po] = u[sub:21min9po]m-1[/sub:21min9po]u[sub:21min9po]n[/sub:21min9po] + u[sub:21min9po]m[/sub:21min9po]u[sub:21min9po]n+1[/sub:21min9po]
for all positive integers m and n.
Deduce, again using induction on n, that u[sub:21min9po]m[/sub:21min9po] divides u[sub:21min9po]mn[/sub:21min9po]
u[sub:21min9po]m+n[/sub:21min9po] = u[sub:21min9po]m-1[/sub:21min9po]u[sub:21min9po]n[/sub:21min9po] + u[sub:21min9po]m[/sub:21min9po]u[sub:21min9po]n+1[/sub:21min9po]
for all positive integers m and n.
Deduce, again using induction on n, that u[sub:21min9po]m[/sub:21min9po] divides u[sub:21min9po]mn[/sub:21min9po]