POST EDITED - 5/5/13
y = L = length of arc
evaluated at lower bound 2 and upper bound 3.
Formula: \(\displaystyle \int dy = \int\limits_a^b [1 + ( (\dfrac{dy}{dx}(x)))^{2}]^{1/2} dx\)
\(\displaystyle y = \dfrac{x^{3}}{24} + 2x^{-1}\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{x^{2}}{8} - 2x^{-2}\)
\(\displaystyle \int dy = \int\limits_2^3[1 + (\dfrac{x^{2}}{8} - 2x^{-2})^{2})]^{1/2} dx\) Note that the \(\displaystyle \dfrac{dy}{dx}\) was a perfect square.
\(\displaystyle \int dy = \int[1 + (\dfrac{x^{4}}{64} - \dfrac{1}{2} + 4x^{-4})]^{1/2} dx\) This comes from FOIL.
\(\displaystyle \int dy = \int[\dfrac{x^{4}}{64} + \dfrac{1}{2} + 4x^{-4})]^{1/2} dx\) After the 1 was added.
Now here is the main question.
\(\displaystyle \dfrac{x^{4}}{64} + \dfrac{1}{2} = 4x^{-4} = x^{-4}(\dfrac{x^{8}}{64} + \dfrac{x^{4}}{2} + 4) = x^{-4}(\dfrac{x^{4}}{ 8} + 2)^{2}\)
= \(\displaystyle (x^{-2})^{2}(\dfrac{x^{4}}{8} + 2)^{2} = (\dfrac{x^{2}}{8} + 2x^{-2})^{2}\)
What is going on this line and the one above it?
\(\displaystyle \int dy = \int[\dfrac{x^{2}}{8} + 2x^{-2})^{2} ]^{1/2} dx\)
\(\displaystyle \int dy = \int(\dfrac{x^{2}}{8} + 2x^{-2}) dx\)
\(\displaystyle y + C_y = \dfrac{x^{3}}{24} - 2x^{-1} + C_x\)
\(\displaystyle y + C_y - C_y = \dfrac{x^{3}}{24} - 2x^{-1} + C_x - C_y \)
\(\displaystyle y = \dfrac{x^{3}}{24} - 2x^{-1} + C \)
Now evaluating the definite integral:
At x = 2 (lower bound)
\(\displaystyle \dfrac{(2)^{3}}{24} - 2(2)^{-1} = -\dfrac{2}{3}\)
At x = 3 (upper bound)
\(\displaystyle \dfrac{(3)^{3}}{24} - 2(3)^{-1} = -\dfrac{11}{24}\)
y= \(\displaystyle \dfrac{11}{24} - \dfrac{2}{3} = \dfrac{9}{8}\) (The length of the arc or L)
y = L = length of arc
evaluated at lower bound 2 and upper bound 3.
Formula: \(\displaystyle \int dy = \int\limits_a^b [1 + ( (\dfrac{dy}{dx}(x)))^{2}]^{1/2} dx\)
\(\displaystyle y = \dfrac{x^{3}}{24} + 2x^{-1}\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{x^{2}}{8} - 2x^{-2}\)
\(\displaystyle \int dy = \int\limits_2^3[1 + (\dfrac{x^{2}}{8} - 2x^{-2})^{2})]^{1/2} dx\) Note that the \(\displaystyle \dfrac{dy}{dx}\) was a perfect square.
\(\displaystyle \int dy = \int[1 + (\dfrac{x^{4}}{64} - \dfrac{1}{2} + 4x^{-4})]^{1/2} dx\) This comes from FOIL.
\(\displaystyle \int dy = \int[\dfrac{x^{4}}{64} + \dfrac{1}{2} + 4x^{-4})]^{1/2} dx\) After the 1 was added.
Now here is the main question.
\(\displaystyle \dfrac{x^{4}}{64} + \dfrac{1}{2} = 4x^{-4} = x^{-4}(\dfrac{x^{8}}{64} + \dfrac{x^{4}}{2} + 4) = x^{-4}(\dfrac{x^{4}}{ 8} + 2)^{2}\)
= \(\displaystyle (x^{-2})^{2}(\dfrac{x^{4}}{8} + 2)^{2} = (\dfrac{x^{2}}{8} + 2x^{-2})^{2}\)
\(\displaystyle \int dy = \int[\dfrac{x^{2}}{8} + 2x^{-2})^{2} ]^{1/2} dx\)
\(\displaystyle \int dy = \int(\dfrac{x^{2}}{8} + 2x^{-2}) dx\)
\(\displaystyle y + C_y = \dfrac{x^{3}}{24} - 2x^{-1} + C_x\)
\(\displaystyle y + C_y - C_y = \dfrac{x^{3}}{24} - 2x^{-1} + C_x - C_y \)
\(\displaystyle y = \dfrac{x^{3}}{24} - 2x^{-1} + C \)
Now evaluating the definite integral:
At x = 2 (lower bound)
\(\displaystyle \dfrac{(2)^{3}}{24} - 2(2)^{-1} = -\dfrac{2}{3}\)
At x = 3 (upper bound)
\(\displaystyle \dfrac{(3)^{3}}{24} - 2(3)^{-1} = -\dfrac{11}{24}\)
y= \(\displaystyle \dfrac{11}{24} - \dfrac{2}{3} = \dfrac{9}{8}\) (The length of the arc or L)
Last edited: