Angles Related to a Circle

neno89

New member
Joined
Oct 25, 2005
Messages
20
Hey..can someone help me solve this problem. I am confused.

334vp.png


Given: segment WZ is congruent to segment XY. Arc WXY = 200 degrees.
Find: measure of angle P

Thank you for your help!
 
Hello, neno89!

Recall this theorem:
If two secants are drawn to a circle from an external point,
the included angle is one-half the differnce of the intercepted arcs.

In your diagram: P  =  12(WXZY)\displaystyle \,\angle P\;=\;\frac{1}{2}\left(\overline{WX}\,-\,\overline{ZY}\right)


We are told that: WXY=200o        WX+XY=200o    \displaystyle \,\overline{WXY}\:=\:200^o\;\;\Rightarrow\;\;\overline{WX}\,+\,\overline{XY}\:=\:200^o\;\; [1]

Then: WZY=160o        WZ+ZY=160o    \displaystyle \,\overline{WZY}\:=\:160^o\;\;\Rightarrow\;\;\overline{WZ}\,+\,\overline{ZY}\:=\:160^o\;\; [2]

Subtract [2] from [1]: (WX+XY)(WZ+ZY)=40o\displaystyle \,(\overline{WX}\,+\,\overline{XY})\,-\,(\overline{WZ}\,+\,\overline{ZY})\:=\:40^o

We have: WX+XYWZZY=40o\displaystyle \,\overline{WX}\,+\,\overline{XY}\,-\,\overline{WZ}\,-\,\overline{ZY}\:=\:40^o

    \displaystyle \;\;But WZ=XY\displaystyle WZ\,=\,XY, hence: WZ=XY.    \displaystyle \,\overline{WZ}\,=\,\overline{XY}.\;\; (Equal chords subtend equal arcs)


Our equation becomes: WXZY=40o\displaystyle \overline{WX}\,-\,\overline{ZY}\:=\:40^o . . . the difference of the intercepted arcs!

Therefore: P=12(40o)=20o\displaystyle \,\angle P\:=\:\frac{1}{2}(40^o)\:=\:20^o
 
Top