There are various ways to tackle this problem. Let's do it this way:
\(\displaystyle \L\\sin({\theta})=\frac{15}{y}\)
\(\displaystyle \L\\cos({\theta})\frac{d{\theta}}{dt}=\frac{-15}{y^{2}}\frac{dy}{dt}\)
By Pythagoras, x=20 when y=25.
Therefore, \(\displaystyle \L\\cos({\theta})=\frac{20}{25}\)
\(\displaystyle \L\\(\frac{20}{25})(\frac{d{\theta}}{dt})=\frac{-15}{625}(-1)=\frac{3}{100}\;\ \frac{rad}{sec}\)
You could also use some other trig functions.
\(\displaystyle \L\\15csc({\theta})=y\)
\(\displaystyle \L\\-15csc({\theta})cot({\theta})\frac{d{\theta}}{dt}=\frac{dy}{dt}\)
When y=25, \(\displaystyle \L\\csc({\theta})=\frac{25}{15}=\frac{5}{3}\)
And \(\displaystyle \L\\cot({\theta})=\frac{20}{15}=\frac{4}{3}\)
\(\displaystyle \L\\-15(\frac{5}{3})(\frac{4}{3})\frac{d{\theta}}{dt}=-1\)
\(\displaystyle \L\\\frac{d{\theta}}{dt}=\frac{3}{100}\;\ rad/sec\)